Some Practical Applications
Quite generally, just as in one variable, one can use the multiple integral to find the average of a function over a given set. Given a set D ⊆ Rn and an integrable function f over D, the average value of f over its domain is given by
where m(D) is the measure of D.
Additionally, multiple integrals are used in many applications in physics. The examples below also show some variations in the notation.
In mechanics, the moment of inertia is calculated as the volume integral (triple integral) of the density weighed with the square of the distance from the axis:
The gravitational potential associated with a mass distribution given by a mass measure dm on three-dimensional Euclidean space R3 is
If there is a continuous function ρ(x) representing the density of the distribution at x, so that dm(x) = ρ(x)d 3x, where d 3x is the Euclidean volume element, then the gravitational potential is
In electromagnetism, Maxwell's equations can be written using multiple integrals to calculate the total magnetic and electric fields. In the following example, the electric field produced by a distribution of charges given by the volume charge density is obtained by a triple integral of a vector function:
This can also be written as an integral with respect to a signed measure representing the charge distribution.
Read more about this topic: Multiple Integral
Famous quotes containing the word practical:
“Tried by a New England eye, or the more practical wisdom of modern times, they are the oracles of a race already in its dotage; but held up to the sky, which is the only impartial and incorruptible ordeal, they are of a piece with its depth and serenity, and I am assured that they will have a place and significance as long as there is a sky to test them by.”
—Henry David Thoreau (18171862)