Monoidal Category - Free Strict Monoidal Category

Free Strict Monoidal Category

For every category C, the free strict monoidal category Σ(C) can be constructed as follows:

  • its objects are lists (finite sequences) A1, ..., An of objects of C;
  • there are arrows between two objects A1, ..., Am and B1, ..., Bn only if m = n, and then the arrows are lists (finite sequences) of arrows f1: A1B1, ..., fn: AnBn of C;
  • the tensor product of two objects A1, ..., An and B1, ..., Bm is the concatenation A1, ..., An, B1, ..., Bm of the two lists, and, similarly, the tensor product of two morphisms is given by the concatenation of lists.

This operation Σ mapping category C to Σ(C) can be extended to a strict 2-monad on Cat.

Read more about this topic:  Monoidal Category

Famous quotes containing the words free, strict and/or category:

    Think of what our Nation stands for,
    Books from Boots’ and country lanes,
    Free speech, free passes, class distinction,
    Democracy and proper drains.
    Sir John Betjeman (1906–1984)

    Scientific reason, with its strict conscience, its lack of prejudice, and its determination to question every result again the moment it might lead to the least intellectual advantage, does in an area of secondary interest what we ought to be doing with the basic questions of life.
    Robert Musil (1880–1942)

    Despair is typical of those who do not understand the causes of evil, see no way out, and are incapable of struggle. The modern industrial proletariat does not belong to the category of such classes.
    Vladimir Ilyich Lenin (1870–1924)