Microcanonical Ensemble - Classical Mechanical Systems

Classical Mechanical Systems

As with any ensemble of classical systems, we would like to find a corresponding probability measure on the phase space "M". This constant energy assumption means that every system in the ensemble is confined to a submanifold of phase space of constant energy "E". Call this submanifold . From the physical considerations given above, it is already clear what the probability measure on the constant energy surface ("not the full phase space") should be: namely, the trivial one that is constant everywhere. However, while only the submanifold is of interest for the microcanonical ensemble, in other, more general ensembles, it is necessary to consider the full phase space. We now construct a measure on the full phase space that is suitable for the microcanonical ensemble.

The Liouville measure on the full phase space induces a measure on in the following manner:

The measure of an open subset R of is given by

Where Q is any open subset of M such that, Q(E, E + ΔE) is part of Q with E < H < E + ΔE, and "" is the usual Liouville volume. Thus any sufficiently good (measurable) subset of can be characterized by its hyperarea(measure) with respect to .

The density function on the full phase space is the generalized function, where H is the Hamiltonian and is the hyperarea of . If Δ is a region of the phase space, the probability of a system being in a state within Δ is simply

where is the intersection of and .

Notice how one can either consider the whole phase space and use the measure whose density is a generalized function, or restrict to the constant energy surface in question and use the measure whose density is a constant function. For instance, consider a 1-dimensional harmonic oscillator. The phase space is (the position-momentum plane) and the constant energy hypersurface is the ellipse

The latter can be parametrized as

where varies between 0 and . The measure would then equal up to a constant. On the other hand, if one considers the ellipse embedded in the plane, then it would have measure zero, which is why a generalized function is used as the density.

Read more about this topic:  Microcanonical Ensemble

Famous quotes containing the words classical, mechanical and/or systems:

    Compare the history of the novel to that of rock ‘n’ roll. Both started out a minority taste, became a mass taste, and then splintered into several subgenres. Both have been the typical cultural expressions of classes and epochs. Both started out aggressively fighting for their share of attention, novels attacking the drama, the tract, and the poem, rock attacking jazz and pop and rolling over classical music.
    W. T. Lhamon, U.S. educator, critic. “Material Differences,” Deliberate Speed: The Origins of a Cultural Style in the American 1950s, Smithsonian (1990)

    Industry has operated against the artisan in favor of the idler, and also in favor of capital and against labor. Any mechanical invention whatsoever has been more harmful to humanity than a century of war.
    Rémy De Gourmont (1858–1915)

    In all systems of theology the devil figures as a male person.... Yes, it is women who keep the church going.
    Don Marquis (1878–1937)