Micellar Liquid Chromatography - Efficiency

Efficiency

The main limitation in the use of MLC is the reduction in efficiency (peak broadening) that is observed when purely aqueous micellar mobile phases are used. Several explanations for the poor efficiency have been theorized. Poor wetting of the stationary phase by the micellar aqueous mobile phase, slow mass transfer between the micelles and the stationary phase, and poor mass transfer within the stationary phase have all been postulated as possible causes. To enhance efficiency, the most common approaches have been the addition of small amounts of isopropyl alcohol and increase in temperature. A review by Berthod studied the combined theories presented above and applied the Knox equation to independently determine the cause of the reduced efficiency. The Knox equation is commonly used in HPLC to describe the different contributions to overall band broadening of a solute. The Knox equation is expressed as:

h = An1/3 + B/n + Cn

Where:

  • h = the reduced plate height count (plate height/stationary phase particle diameter)
  • n = the reduced mobile phase linear velocity (velocity times stationary phase particle diameter/solute diffusion coefficient in the mobile phase)
  • A, B, and C are constants related to solute flow anisotropy (eddy diffusion), molecular longitudinal diffusion, and mass transfer properties respectively.

Berthod’s use of the Knox equation to experimentally determine which of the proposed theories was most correct led him to the following conclusions. The flow anisotropy in micellar phase seems to be much greater than in traditional hydro-organic mobile phases of similar viscosity. This is likely due to the partial clogging of the stationary phase pores by adsorbed surfactant molecules. Raising the column temperature served to both decrease viscosity of the mobile phase and the amount of adsorbed surfactant. Both results reduce the A term and the amount of eddy diffusion, and thereby increase efficiency.

The increase in the B term, as related to longitudinal diffusion, is associated with the decrease in the solute diffusion coefficient in the mobile phase, DM, due to the presence of the micelles, and an increase in the capacity factor, k¢. Again, this is related to surfactant adsorption on the stationary phase causing a dramatic decrease in the solute diffusion coefficient in the stationary phase, DS. Again an increase in temperature, now coupled with an addition of alcohol to the mobile phase, drastically decreases the amount of the absorbed surfactant. In turn, both actions reduce the C term caused by a slow mass transfer from the stationary phase to the mobile phase. Further optimization of efficiency can be gained by reducing the flow rate to one closely matched to that derived from the Knox equation. Overall, the three proposed theories seemed to have contributing effects of the poor efficiency observed, and can be partially countered by the addition of organic modifiers, particularly alcohol, and increasing the column temperature.

Read more about this topic:  Micellar Liquid Chromatography

Famous quotes containing the word efficiency:

    “Never hug and kiss your children! Mother love may make your children’s infancy unhappy and prevent them from pursuing a career or getting married!” That’s total hogwash, of course. But it shows on extreme example of what state-of-the-art “scientific” parenting was supposed to be in early twentieth-century America. After all, that was the heyday of efficiency experts, time-and-motion studies, and the like.
    Lawrence Kutner (20th century)

    I’ll take fifty percent efficiency to get one hundred percent loyalty.
    Samuel Goldwyn (1882–1974)

    Nothing comes to pass in nature, which can be set down to a flaw therein; for nature is always the same and everywhere one and the same in her efficiency and power of action; that is, nature’s laws and ordinances whereby all things come to pass and change from one form to another, are everywhere and always; so that there should be one and the same method of understanding the nature of all things whatsoever, namely, through nature’s universal laws and rules.
    Baruch (Benedict)