Detailed Definition
For an ordered subset of vertices and a vertex v in a connected graph G, the representation of v with respect to W is the ordered k-tuple, where d(x,y) represents the distance between the vertices x and y. The set W is a resolving set (or locating set) for G if every two vertices of G have distinct representations. The metric dimension of G is the minimum cardinality of a resolving set for G. A resolving set containing a minimum number of vertices is called a basis (or reference set) for G. Resolving sets were introduced independently by Slater (1975) and Harary & Melter (1976).
Read more about this topic: Metric Dimension (graph Theory)
Famous quotes containing the words detailed and/or definition:
“[The Republicans] offer ... a detailed agenda for national renewal.... [On] reducing illegitimacy ... the state will use ... funds for programs to reduce out-of-wedlock pregnancies, to promote adoption, to establish and operate childrens group homes, to establish and operate residential group homes for unwed mothers, or for any purpose the state deems appropriate. None of the taxpayer funds may be used for abortion services or abortion counseling.”
—Newt Gingrich (b. 1943)
“It is very hard to give a just definition of love. The most we can say of it is this: that in the soul, it is a desire to rule; in the spirit, it is a sympathy; and in the body, it is but a hidden and subtle desire to possessafter many mysterieswhat one loves.”
—François, Duc De La Rochefoucauld (16131680)