Metric Dimension (graph Theory)

Metric Dimension (graph Theory)

In graph theory, the metric dimension of a graph G is the minimum number of vertices in a subset S of G such that all other vertices are uniquely determined by their distances to the vertices in S. Finding the metric dimension of a graph is an NP-hard problem; the decision version, determining whether the metric dimension is less than a given value, is NP-complete.

Read more about Metric Dimension (graph Theory):  Detailed Definition, Trees, Properties

Famous quotes containing the word dimension:

    God cannot be seen: he is too bright for sight; nor grasped: he is too pure for touch; nor measured: for he is beyond all sense, infinite, measureless, his dimension known to himself alone.
    Marcus Minucius Felix (2nd or 3rd cen. A.D.)