Mellin Transform - in Probability Theory

In Probability Theory

In probability theory Mellin transform is an essential tool in studying the distributions of products of random variables. If X is a random variable, and X+ = max{X,0} denotes its positive part, while X − = max{−X,0} is its negative part, then the Mellin transform of X is defined as

 \mathcal{M}_X(s) = \int_0^\infty x^s dF_{X^+}(x) + \gamma\int_0^\infty x^s dF_{X^-}(x),

where γ is a formal indeterminate with γ2 = 1. This transform exists for all s in some complex strip D = {s: a ≤ Re(s) ≤ b}, where a ≤ 0 ≤ b.

The Mellin transform of a random variable X uniquely determines its distribution function FX. The importance of the Mellin transform in probability theory lies in the fact that if X and Y are two independent random variables, then the Mellin transform of their products is equal to the product of the Mellin transforms of X and Y:

 \mathcal{M}_{XY}(s) = \mathcal{M}_X(s)\mathcal{M}_Y(s)

Read more about this topic:  Mellin Transform

Famous quotes containing the words probability and/or theory:

    Only in Britain could it be thought a defect to be “too clever by half.” The probability is that too many people are too stupid by three-quarters.
    John Major (b. 1943)

    A theory of the middle class: that it is not to be determined by its financial situation but rather by its relation to government. That is, one could shade down from an actual ruling or governing class to a class hopelessly out of relation to government, thinking of gov’t as beyond its control, of itself as wholly controlled by gov’t. Somewhere in between and in gradations is the group that has the sense that gov’t exists for it, and shapes its consciousness accordingly.
    Lionel Trilling (1905–1975)