A Simple Application
Assume that f is a continuous, real-valued function, defined on an arbitrary interval I of the real line. If the derivative of f at every interior point of the interval I exists and is zero, then f is constant.
Proof: Assume the derivative of f at every interior point of the interval I exists and is zero. Let (a, b) be an arbitrary open interval in I. By the mean value theorem, there exists a point c in (a,b) such that
This implies that f(a) = f(b). Thus, f is constant on the interior of I and thus is constant on I by continuity. (See below for a multivariable version of this result.)
Remarks:
- Only continuity of ƒ, not differentiability, is needed at the endpoints of the interval I. No hypothesis of continuity needs to be stated if I is an open interval, since the existence of a derivative at a point implies the continuity at this point. (See the section continuity and differentiability of the article derivative.)
- The differentiability of ƒ can be relaxed to one-sided differentiability, a proof given in the article on semi-differentiability.
Read more about this topic: Mean Value Theorem
Famous quotes containing the words simple and/or application:
“If when a businessman speaks of minority employment, or air pollution, or poverty, he speaks in the language of a certified public accountant analyzing a corporate balance sheet, who is to know that he understands the human problems behind the statistical ones? If the businessman would stop talking like a computer printout or a page from the corporate annual report, other people would stop thinking he had a cash register for a heart. It is as simple as thatbut that isnt simple.”
—Louis B. Lundborg (19061981)
“Preaching is the expression of the moral sentiment in application to the duties of life.”
—Ralph Waldo Emerson (18031882)