Mean Field Theory - Formal Approach

Formal Approach

The formal basis for mean field theory is the Bogoliubov inequality. This inequality states that the free energy of a system with Hamiltonian

has the following upper bound:

where is the entropy and where the average is taken over the equilibrium ensemble of the reference system with Hamiltonian . In the special case that the reference Hamiltonian is that of a non-interacting system and can thus be written as

where is shorthand for the degrees of freedom of the individual components of our statistical system (atoms, spins and so forth). One can consider sharpening the upper bound by minimizing the right hand side of the inequality. The minimizing reference system is then the "best" approximation to the true system using non-correlated degrees of freedom, and is known as the mean field approximation.

For the most common case that the target Hamiltonian contains only pairwise interactions, i.e.,

where is the set of pairs that interact, the minimizing procedure can be carried out formally. Define as the generalized sum of the observable over the degrees of freedom of the single component (sum for discrete variables, integrals for continuous ones). The approximating free energy is given by

where is the probability to find the reference system in the state specified by the variables . This probability is given by the normalized Boltzmann factor

P^{(N)}_{0}(\xi_{1},\xi_{2},...,\xi_{N})=\frac{1}{Z^{(N)}_{0}}e^{-\beta \mathcal{H}_{0}(\xi_{1},\xi_{2},...,\xi_{N})}=\prod_{i=1}^{N}\frac{1}{Z_{0}}e^{-\beta h_{i}\left( \xi_{i}\right)}
\ \stackrel{\mathrm{def}}{=}\ \prod_{i=1}^{N} P^{(i)}_{0}(\xi_{i})

where is the partition function. Thus

F_{0}=\sum_{(i,j)\in\mathcal{P}} {\rm Tr}_{i,j}V_{i,j}\left( \xi_{i},\xi_{j}\right)P^{(i)}_{0}(\xi_{i})P^{(j)}_{0}(\xi_{j})+
kT \sum_{i=1}^{N} {\rm Tr}_{i} P^{(i)}_{0}(\xi_{i}) \log P^{(i)}_{0}(\xi_{i}).

In order to minimize we take the derivative with respect to the single degree-of-freedom probabilities using a Lagrange multiplier to ensure proper normalization. The end result is the set of self-consistency equations

where the mean field is given by

Read more about this topic:  Mean Field Theory

Famous quotes containing the words formal and/or approach:

    The conviction that the best way to prepare children for a harsh, rapidly changing world is to introduce formal instruction at an early age is wrong. There is simply no evidence to support it, and considerable evidence against it. Starting children early academically has not worked in the past and is not working now.
    David Elkind (20th century)

    Let me approach at least, and touch thy hand.
    [Samson:] Not for thy life, lest fierce remembrance wake
    My sudden rage to tear thee joint by joint.
    At distance I forgive thee, go with that;
    Bewail thy falsehood, and the pious works
    It hath brought forth to make thee memorable
    Among illustrious women, faithful wives:
    Cherish thy hast’n’d widowhood with the gold
    Of Matrimonial treason: so farewel.
    John Milton (1608–1674)