Mean Field Theory

Mean field theory (MFT, also known as self-consistent field theory) is a method to analyse physical systems with multiple bodies. A many-body system with interactions is generally very difficult to solve exactly, except for extremely simple cases (random field theory, 1D Ising model). The n-body system is replaced by a 1-body problem with a chosen good external field. The external field replaces the interaction of all the other particles to an arbitrary particle. The great difficulty (e.g. when computing the partition function of the system) is the treatment of combinatorics generated by the interaction terms in the Hamiltonian when summing over all states. The goal of mean field theory is to resolve these combinatorial problems. MFT is known under a great many names and guises. Similar techniques include Bragg-Williams approximation, models on Bethe lattice, Landau theory, Pierre-Weiss approximation, Flory–Huggins solution theory, and Scheutjens–Fleer theory.

The main idea of MFT is to replace all interactions to any one body with an average or effective interaction, sometimes called a molecular field. This reduces any multi-body problem into an effective one-body problem. The ease of solving MFT problems means that some insight into the behavior of the system can be obtained at a relatively low cost.

In field theory, the Hamiltonian may be expanded in terms of the magnitude of fluctuations around the mean of the field. In this context, MFT can be viewed as the "zeroth-order" expansion of the Hamiltonian in fluctuations. Physically, this means an MFT system has no fluctuations, but this coincides with the idea that one is replacing all interactions with a "mean field". Quite often, in the formalism of fluctuations, MFT provides a convenient launch-point to studying first or second order fluctuations.

In general, dimensionality plays a strong role in determining whether a mean-field approach will work for any particular problem. In MFT, many interactions are replaced by one effective interaction. Then it naturally follows that if the field or particle exhibits many interactions in the original system, MFT will be more accurate for such a system. This is true in cases of high dimensionality, or when the Hamiltonian includes long-range forces. The Ginzburg criterion is the formal expression of how fluctuations render MFT a poor approximation, depending upon the number of spatial dimensions in the system of interest.

While MFT arose primarily in the field of statistical mechanics, it has more recently been applied elsewhere, for example in inference, graphical models theory and artificial intelligence.

Read more about Mean Field Theory:  Formal Approach, Applications, Extension To Time-Dependent Mean Fields

Famous quotes containing the words field and/or theory:

    My prime of youth is but a frost of cares,
    My feast of joy is but a dish of pain,
    My crop of corn is but a field of tares,
    And all my good is but vain hope of gain:
    The day is past, and yet I saw no sun,
    And now I live, and now my life is done.
    Chidiock Tichborne (1558–1586)

    Everything to which we concede existence is a posit from the standpoint of a description of the theory-building process, and simultaneously real from the standpoint of the theory that is being built. Nor let us look down on the standpoint of the theory as make-believe; for we can never do better than occupy the standpoint of some theory or other, the best we can muster at the time.
    Willard Van Orman Quine (b. 1908)