Maxwell's Equations in Curved Spacetime - Lorentz Force Density

Lorentz Force Density

The density of the Lorentz force is a covariant vector density given by

The force on a test particle subject only to gravity and electromagnetism is

where pα is the linear 4-momentum of the particle, t is any time coordinate parameterizing the world line of the particle, Γβαγ is the Christoffel symbol (gravitational force field), and q is the electric charge of the particle.

This equation is invariant under a change in the time coordinate; just multiply by and use the chain rule. It is also invariant under a change in the x coordinate system.

Using the transformation law for the Christoffel symbol

\bar{\Gamma}^{\beta}_{\alpha \gamma} \, = \,
\frac{\partial \bar{x}^{\beta}}{\partial x^{\epsilon}} \,
\frac{\partial x^{\delta}}{\partial \bar{x}^{\alpha}} \,
\frac{\partial x^{\zeta}}{\partial \bar{x}^{\gamma}} \,
\Gamma^{\epsilon}_{\delta \zeta} \,
+
\frac{\partial \bar{x}^{\beta}}{\partial x^{\eta}}\,
\frac{\partial^2 x^{\eta}}{\partial \bar{x}^{\alpha} \partial \bar{x}^{\gamma}} \,

we get

\begin{align}
& \frac{d \bar{p}_{\alpha}}{d t} \, - \, \bar{\Gamma}^{\beta}_{\alpha \gamma} \, \bar{p}_{\beta} \, \frac{d \bar{x}^{\gamma}}{d t} \, - \, q \, \bar{F}_{\alpha \gamma} \, \frac{d \bar{x}^{\gamma}}{d t} \\
& = \, \frac{d}{d t} \left( \frac{\partial x^{\delta}}{\partial \bar{x}^{\alpha}} \, p_{\delta} \right) \, - \,
\left(
\frac{\partial \bar{x}^{\beta}}{\partial x^{\theta}} \,
\frac{\partial x^{\delta}}{\partial \bar{x}^{\alpha}} \,
\frac{\partial x^{\iota}}{\partial \bar{x}^{\gamma}} \,
\Gamma^{\theta}_{\delta \iota} + \, \frac{\partial \bar{x}^{\beta}}{\partial x^{\eta}}\,
\frac{\partial^2 x^{\eta}}{\partial \bar{x}^{\alpha} \partial \bar{x}^{\gamma}}
\right) \, \frac{\partial x^{\epsilon}}{\partial \bar{x}^{\beta}} \, p_{\epsilon} \, \frac{\partial \bar{x}^{\gamma}}{\partial x^{\zeta}} \, \frac{d x^{\zeta}}{d t} \, - \, q \, \frac{\partial x^{\delta}}{\partial \bar{x}^{\alpha}} \, F_{\delta \zeta} \, \frac{d x^{\zeta}}{d t} \\
& = \, \frac{\partial x^{\delta}}{\partial \bar{x}^{\alpha}} \, \left(
\frac{d p_{\delta}}{d t} \, - \, \Gamma^{\epsilon}_{\delta \zeta} \, p_{\epsilon} \, \frac{d x^{\zeta}}{d t} \, - \, q \, F_{\delta \zeta} \, \frac{d x^{\zeta}}{d t} \right) + \frac{d}{d t} \left( \frac{\partial x^{\delta}}{\partial \bar{x}^{\alpha}} \right) \, p_{\delta} \, - \,
\left( \frac{\partial \bar{x}^{\beta}}{\partial x^{\eta}}\,
\frac{\partial^2 x^{\eta}}{\partial \bar{x}^{\alpha} \partial \bar{x}^{\gamma}}
\right) \, \frac{\partial x^{\epsilon}}{\partial \bar{x}^{\beta}} \, p_{\epsilon} \, \frac{\partial \bar{x}^{\gamma}}{\partial x^{\zeta}} \, \frac{d x^{\zeta}}{d t} \\
& = \, 0 \, + \, \frac{d}{d t} \left( \frac{\partial x^{\delta}}{\partial \bar{x}^{\alpha}} \right) \, p_{\delta} \, - \,
\frac{\partial^2 x^{\epsilon}}{\partial \bar{x}^{\alpha} \partial \bar{x}^{\gamma}} p_{\epsilon} \, \frac{d \bar{x}^{\gamma}}{d t} \, = \, 0 \ .
\end{align}

Read more about this topic:  Maxwell's Equations In Curved Spacetime

Famous quotes containing the word force:

    The whole force of the respectable circles to which I belonged, that respectable circle which knew as I did not the value of security won, the slender chance of replacing it if lost or abandoned, was against me ...
    Ida M. Tarbell (1857–1944)