Mass - Gravitational Mass - Newtonian Gravitational Mass

Newtonian Gravitational Mass

Earth's Moon Mass of Earth
Semi-major axis Sidereal orbital period
0.002 569 AU 0.074 802 sidereal year
Earth's Gravity Earth's Radius
9.806 65 m/s2 6 375 km

Robert Hooke has published his concept of gravitational forces in 1674, stating that, all Cœlestial Bodies whatsoever, have an attraction or gravitating power towards their own Centers they do also attract all the other Cœlestial Bodies that are within the sphere of their activity. He further states that gravitational attraction increases by how much the nearer the body wrought upon is to their own center. In a correspondence of 1679–1680 between Robert Hooke and Isaac Newton, Hooke conjectures that gravitational forces might decrease according to the double of the distance between the two bodies. Hooke urged Newton, who was a pioneer in the development of calculus, to work through the mathematical details of Keplerian orbits to determine if Hooke’s hypothesis was correct. Newton’s own investigations verified that Hooke was correct, but due to personal differences between the two men, Newton chose not to reveal this to Hooke. Isaac Newton kept quiet about his discoveries until 1684, at which time he told a friend, Edmond Halley, that he had solved the problem of gravitational orbits, but had misplaced the solution in his office. After being encouraged by Halley, Newton decided to develop his ideas about gravity and publish all of his findings. In November 1684, Isaac Newton sent a document to Edmund Halley, now lost but presumed to have been titled De motu corporum in gyrum (Latin for "On the motion of bodies in an orbit"). Halley presented Newton’s findings to the Royal Society of London, with a promise that a fuller presentation would follow. Newton later recorded his ideas in a three book set, entitled Philosophiæ Naturalis Principia Mathematica (Latin: "Mathematical Principles of Natural Philosophy"). The first was received by the Royal Society on 28 April 1685–6, the second on 2 March 1686–7, and the third on 6 April 1686–7. The Royal Society published Newton’s entire collection at their own expense in May 1686–7.

Isaac Newton had bridged the gap between Kepler’s gravitational mass and Galileo’s gravitational acceleration, and proved the following relationship:

where g is the apparent acceleration of a body as it passes through a region of space where gravitational fields exist, μ is the gravitational mass (standard gravitational parameter) of the body causing gravitational fields, and R is the radial coordinate (the distance between the centers of the two bodies).

By finding the exact relationship between a body's gravitational mass and its gravitational field, Newton provided a second method for measuring gravitational mass. The mass of the Earth can be determined using Kepler’s method (from the orbit of Earth’s Moon), or it can be determined by measuring the gravitational acceleration on the Earth’s surface, and multiplying that by the square of the Earth’s radius. The mass of the Earth is approximately three millionths of the mass of the Sun. To date, no other accurate method for measuring gravitational mass has been discovered.

Read more about this topic:  Mass, Gravitational Mass

Famous quotes containing the word mass:

    No doubt Jews are most obnoxious creatures. Any competent historian or psychoanalyst can bring a mass of incontrovertible evidence to prove that it would have been better for the world if the Jews had never existed. But I, as an Irishman, can, with patriotic relish, demonstrate the same of the English. Also of the Irish.... We all live in glass houses. Is it wise to throw stones at the Jews? Is it wise to throw stones at all?
    George Bernard Shaw (1856–1950)