Logit - Comparison With Probit

Comparison With Probit

Closely related to the logit function (and logit model) are the probit function and probit model. The logit and probit are both sigmoid functions with a domain between 0 and 1, which makes them both quantile functions — i.e. inverses of the cumulative distribution function (CDF) of a probability distribution. In fact, the logit is the quantile function of the logistic distribution, while the probit is the quantile function of the normal distribution. The probit function is denoted, where is the CDF of the normal distribution, as just mentioned:

As shown in the graph, the logit and probit functions are extremely similar, particularly when the probit function is scaled so that its slope at y=0 matches the slope of the logit. As a result, probit models are sometimes used in place of logit models because for certain applications (e.g. in Bayesian statistics) implementation of them is easier.

Read more about this topic:  Logit

Famous quotes containing the words comparison with and/or comparison:

    In everyone’s youthful dreams, philosophy is still vaguely but inseparably, and with singular truth, associated with the East, nor do after years discover its local habitation in the Western world. In comparison with the philosophers of the East, we may say that modern Europe has yet given birth to none.
    Henry David Thoreau (1817–1862)

    He was a superior man. He did not value his bodily life in comparison with ideal things. He did not recognize unjust human laws, but resisted them as he was bid. For once we are lifted out of the trivialness and dust of politics into the region of truth and manhood.
    Henry David Thoreau (1817–1862)