Logarithmic Norm - Applications in Stability Theory and Numerical Analysis

Applications in Stability Theory and Numerical Analysis

The logarithmic norm plays an important role in the stability analysis of a continuous dynamical system . Its role is analogous to that of the matrix norm for a discrete dynamical system .

In the simplest case, when is a scalar complex constant, the discrete dynamical system has stable solutions when, while the differential equation has stable solutions when . When is a matrix, the discrete system has stable solutions if . In the continuous system, the solutions are of the form . They are stable if for all, which follows from property 7 above, if . In the latter case, is a Lyapunov function for the system.

Runge-Kutta methods for the numerical solution of replace the differential equation by a discrete equation, where the rational function is characteristic of the method, and is the time step size. If whenever, then a stable differential equation, having, will always result in a stable (contractive) numerical method, as . Runge-Kutta methods having this property are called A-stable.

Retaining the same form, the results can, under additional assumptions, be extended to nonlinear systems as well as to semigroup theory, where the crucial advantage of the logarithmic norm is that it discriminates between forward and reverse time evolution and can establish whether the problem is well posed. Similar results also apply in the stability analysis in control theory, where there is a need to discriminate between positive and negative feedback.


Read more about this topic:  Logarithmic Norm

Famous quotes containing the words stability, theory, numerical and/or analysis:

    The world can be at peace only if the world is stable, and there can be no stability where the will is in rebellion, where there is not tranquility of spirit and a sense of justice, of freedom, and of right.
    Woodrow Wilson (1856–1924)

    Hygiene is the corruption of medicine by morality. It is impossible to find a hygienest who does not debase his theory of the healthful with a theory of the virtuous.... The true aim of medicine is not to make men virtuous; it is to safeguard and rescue them from the consequences of their vices.
    —H.L. (Henry Lewis)

    The moment a mere numerical superiority by either states or voters in this country proceeds to ignore the needs and desires of the minority, and for their own selfish purpose or advancement, hamper or oppress that minority, or debar them in any way from equal privileges and equal rights—that moment will mark the failure of our constitutional system.
    Franklin D. Roosevelt (1882–1945)

    A commodity appears at first sight an extremely obvious, trivial thing. But its analysis brings out that it is a very strange thing, abounding in metaphysical subtleties and theological niceties.
    Karl Marx (1818–1883)