In mathematics, the logarithmic norm is a real-valued functional on operators, and is derived from either an inner product, a vector norm, or its induced operator norm. The logarithmic norm was independently introduced by Germund Dahlquist and Sergei Lozinskiĭ in 1958, for square matrices. It has since been extended to nonlinear operators and unbounded operators as well. The logarithmic norm has a wide range of applications, in particular in matrix theory, differential equations and numerical analysis.
Read more about Logarithmic Norm: Original Definition, Alternative Definitions, Properties, Example Logarithmic Norms, Applications in Matrix Theory and Spectral Theory, Applications in Stability Theory and Numerical Analysis, Applications To Elliptic Differential Operators, Extensions To Nonlinear Maps
Famous quotes containing the word norm:
“As long as male behavior is taken to be the norm, there can be no serious questioning of male traits and behavior. A norm is by definition a standard for judging; it is not itself subject to judgment.”
—Myriam Miedzian, U.S. author. Boys Will Be Boys, ch. 1 (1991)