Properties of Finite Groups
For finite groups, a "small neighborhood" is taken to be a subgroup defined in terms of a prime number p, usually the local subgroups, the normalizers of the nontrivial p-subgroups. A property is said to be local if it can be detected from the local subgroups. Global and local properties formed a significant portion of the early work on the classification of finite simple groups done during the 1960s.
Read more about this topic: Local Property
Famous quotes containing the words properties of, properties, finite and/or groups:
“The reason why men enter into society, is the preservation of their property; and the end why they choose and authorize a legislative, is, that there may be laws made, and rules set, as guards and fences to the properties of all the members of the society: to limit the power, and moderate the dominion, of every part and member of the society.”
—John Locke (16321704)
“The reason why men enter into society, is the preservation of their property; and the end why they choose and authorize a legislative, is, that there may be laws made, and rules set, as guards and fences to the properties of all the members of the society: to limit the power, and moderate the dominion, of every part and member of the society.”
—John Locke (16321704)
“God is a being of transcendent and unlimited perfections: his nature therefore is incomprehensible to finite spirits.”
—George Berkeley (16851753)
“If we can learn ... to look at the ways in which various groups appropriate and use the mass-produced art of our culture ... we may well begin to understand that although the ideological power of contemporary cultural forms is enormous, indeed sometimes even frightening, that power is not yet all-pervasive, totally vigilant, or complete.”
—Janice A. Radway (b. 1949)