List of First-order Theories - Groups

Groups

The signature of group theory has one constant 1 (the identity), one function of arity 1 (the inverse) whose value on t is denoted by t−1, and one function of arity 2, which is usually omitted from terms. For any integer n. tn is an abbreviation for the obvious term for the nth power of t.

Groups are defined by the axioms

  • Identity: ∀x 1x = xx1 = x
  • Inverse: ∀x x−1x = 1xx−1 = 1
  • Associative: ∀xyz (xy)z = x(yz)

Some properties of groups that can be defined in the first-order language of groups are:

  • Abelianxy xy = yx.
  • Torsion freex x2 = 1→x = 1, ∀x x3 = 1 → x = 1, ∀x x4 = 1 → x = 1, ...
  • Divisiblexy y2 = x, ∀xy y3 = x, ∀xy y4 = x, ...
  • Infinite (as in identity theory)
  • Exponent n (for any fixed positive integer n) ∀x xn = 1
  • Nilpotent of class n (for any fixed positive integer n)
  • Solvable of class n (for any fixed positive integer n)

The theory of Abelian groups is decidable. The theory of Infinite divisible torsion-free abelian groups is complete, as is the theory of Infinite abelian groups of exponent p (for p prime).

The theory of finite groups is the set of first-order statements in the language of groups that are true in all finite groups (there are plenty of infinite models of this theory). It is not completely trivial to find any such statement that is not true for all groups: one example is "given two elements of order 2, either they are conjugate or there is a non-trivial element commuting with both of them".

The properties of being finite, or free, or simple, or torsion are not first-order. More precisely, the first-order theory of all groups with one of these properties has models that do not have this property.

Read more about this topic:  List Of First-order Theories

Famous quotes containing the word groups:

    Trees appeared in groups and singly, revolving coolly and blandly, displaying the latest fashions. The blue dampness of a ravine. A memory of love, disguised as a meadow. Wispy clouds—the greyhounds of heaven.
    Vladimir Nabokov (1899–1977)

    And seniors grow tomorrow
    From the juniors today,
    And even swimming groups can fade,
    Games mistresses turn grey.
    Philip Larkin (1922–1986)

    Belonging to a group can provide the child with a variety of resources that an individual friendship often cannot—a sense of collective participation, experience with organizational roles, and group support in the enterprise of growing up. Groups also pose for the child some of the most acute problems of social life—of inclusion and exclusion, conformity and independence.
    Zick Rubin (20th century)