Biological Liquid Crystals
Lyotropic liquid-crystalline phases are abundant in living systems, the study of which is referred to as lipid polymorphism. Accordingly, lyotropic liquid crystals attract particular attention in the field of biomimetic chemistry. In particular, biological membranes and cell membranes are a form of liquid crystal. Their constituent molecules (e.g. phospholipids) are perpendicular to the membrane surface, yet the membrane is flexible. These lipids vary in shape (see page on lipid polymorphism). The constituent molecules can inter-mingle easily, but tend not to leave the membrane due to the high energy requirement of this process. Lipid molecules can flip from one side of the membrane to the other, this process being catalyzed by flippases and floppases (depending on the direction of movement). These liquid crystal membrane phases can also host important proteins such as receptors freely "floating" inside, or partly outside, the membrane, e.g. CCT.
Many other biological structures exhibit LC behavior. For instance, the concentrated protein solution that is extruded by a spider to generate silk is, in fact, a liquid crystal phase. The precise ordering of molecules in silk is critical to its renowned strength. DNA and many polypeptides can also form LC phases and this too forms an important part of current academic research.
Read more about this topic: Liquid Crystal
Famous quotes containing the words biological, liquid and/or crystals:
“If the most significant characteristic of man is the complex of biological needs he shares with all members of his species, then the best lives for the writer to observe are those in which the role of natural necessity is clearest, namely, the lives of the very poor.”
—W.H. (Wystan Hugh)
“While the State becomes inflated and hypertrophied in order to obtain a firm enough grip upon individuals, but without succeeding, the latter, without mutual relationships, tumble over one another like so many liquid molecules, encountering no central energy to retain, fix and organize them.”
—Emile Durkheim (18581917)
“It is clear that everybody interested in science must be interested in world 3 objects. A physical scientist, to start with, may be interested mainly in world 1 objectssay crystals and X-rays. But very soon he must realize how much depends on our interpretation of the facts, that is, on our theories, and so on world 3 objects. Similarly, a historian of science, or a philosopher interested in science must be largely a student of world 3 objects.”
—Karl Popper (19021994)