Lebesgue Integration - Limitations of The Riemann Integral

Limitations of The Riemann Integral

Here we discuss the limitations of the Riemann integral and the greater scope offered by the Lebesgue integral. We presume a working understanding of the Riemann integral.

With the advent of Fourier series, many analytical problems involving integrals came up whose satisfactory solution required interchanging limit processes and integral signs. However, the conditions under which the integrals

and

are equal proved quite elusive in the Riemann framework. There are some other technical difficulties with the Riemann integral. These are linked with the limit-taking difficulty discussed above.

Failure of monotone convergence. As shown above, the indicator function 1Q on the rationals is not Riemann integrable. In particular, the Monotone convergence theorem fails. To see why, let {ak} be an enumeration of all the rational numbers in (they are countable so this can be done.) Then let

 g_k(x) = \left\{\begin{matrix} 1 & \mbox{if } x = a_j, j\leq k \\
0 & \mbox{otherwise} \end{matrix} \right.

The function gk is zero everywhere except on a finite set of points, hence its Riemann integral is zero. The sequence gk is also clearly non-negative and monotonically increasing to 1Q, which is not Riemann integrable.

Unsuitability for unbounded intervals. The Riemann integral can only integrate functions on a bounded interval. It can however be extended to unbounded intervals by taking limits, so long as this doesn't yield an answer such as .

Integrating on structures other than Euclidean space. The Riemann integral is inextricably linked to the order structure of the line.

Read more about this topic:  Lebesgue Integration

Famous quotes containing the words limitations of, limitations and/or integral:

    The limitations of pleasure cannot be overcome by more pleasure.
    Mason Cooley (b. 1927)

    To note an artist’s limitations is but to define his talent. A reporter can write equally well about everything that is presented to his view, but a creative writer can do his best only with what lies within the range and character of his deepest sympathies.
    Willa Cather (1876–1947)

    Self-centeredness is a natural outgrowth of one of the toddler’s major concerns: What is me and what is mine...? This is why most toddlers are incapable of sharing ... to a toddler, what’s his is what he can get his hands on.... When something is taken away from him, he feels as though a piece of him—an integral piece—is being torn from him.
    Lawrence Balter (20th century)