Definition
The covering dimension of a topological space X is defined to be the minimum value of n, such that every finite open cover of X admits a finite open cover of X which refines in which no point is included in more than n+1 elements. If no such minimal n exists, the space is said to be of infinite covering dimension.
Read more about this topic: Lebesgue Covering Dimension
Famous quotes containing the word definition:
“The very definition of the real becomes: that of which it is possible to give an equivalent reproduction.... The real is not only what can be reproduced, but that which is always already reproduced. The hyperreal.”
—Jean Baudrillard (b. 1929)
“... we all know the wags definition of a philanthropist: a man whose charity increases directly as the square of the distance.”
—George Eliot [Mary Ann (or Marian)
“... if, as women, we accept a philosophy of history that asserts that women are by definition assimilated into the male universal, that we can understand our past through a male lensif we are unaware that women even have a historywe live our lives similarly unanchored, drifting in response to a veering wind of myth and bias.”
—Adrienne Rich (b. 1929)