Least Absolute Deviations

Least absolute deviations (LAD), also known as Least Absolute Errors (LAE), Least Absolute Value (LAV), or the L1 norm problem, is a mathematical optimization technique similar to the popular least squares technique that attempts to find a function which closely approximates a set of data. In the simple case of a set of (x,y) data, the approximation function is a simple "trend line" in two-dimensional Cartesian coordinates. The method minimizes the sum of absolute errors (SAE) (the sum of the absolute values of the vertical "residuals" between points generated by the function and corresponding points in the data). The least absolute deviations estimate also arises as the maximum likelihood estimate if the errors have a Laplace distribution.

Read more about Least Absolute Deviations:  Formulation of The Problem, Contrasting Least Squares With Least Absolute Deviations, Other Properties, Variations, Extensions, Specializations, Solving Methods, See Also

Famous quotes containing the word absolute:

    It has often been argued that absolute scepticism is self-contradictory; but this is a mistake: and even if it were not so, it would be no argument against the absolute sceptic, inasmuch as he does not admit that no contradictory propositions are true. Indeed, it would be impossible to move such a man, for his scepticism consists in considering every argument and never deciding upon its validity; he would, therefore, act in this way in reference to the arguments brought against him.
    Charles Sanders Peirce (1839–1914)