Relationship To The Dirac Delta Function
In probability theory and statistics, the Kronecker delta and Dirac delta function can both be used to represent a discrete distribution. If the support of a distribution consists of points, with corresponding probabilities, then the probability mass function of the distribution over can be written, using the Kronecker delta, as
Equivalently, the probability density function of the distribution can be written using the Dirac delta function as
Under certain conditions, the Kronecker delta can arise from sampling a Dirac delta function. For example, if a Dirac delta impulse occurs exactly at a sampling point and is ideally lowpass-filtered (with cutoff at the critical frequency) per the Nyquist–Shannon sampling theorem, the resulting discrete-time signal will be a Kronecker delta function.
Read more about this topic: Kronecker Delta
Famous quotes containing the words relationship to, relationship and/or function:
“Artists have a double relationship towards nature: they are her master and her slave at the same time. They are her slave in so far as they must work with means of this world so as to be understood; her master in so far as they subject these means to their higher goals and make them subservient to them.”
—Johann Wolfgang Von Goethe (17491832)
“The relationship between mother and professional has not been a partnership in which both work together on behalf of the child, in which the expert helps the mother achieve her own goals for her child. Instead, professionals often behave as if they alone are advocates for the child; as if they are the guardians of the childs needs; as if the mother left to her own devices will surely damage the child and only the professional can rescue him.”
—Elaine Heffner (20th century)
“The information links are like nerves that pervade and help to animate the human organism. The sensors and monitors are analogous to the human senses that put us in touch with the world. Data bases correspond to memory; the information processors perform the function of human reasoning and comprehension. Once the postmodern infrastructure is reasonably integrated, it will greatly exceed human intelligence in reach, acuity, capacity, and precision.”
—Albert Borgman, U.S. educator, author. Crossing the Postmodern Divide, ch. 4, University of Chicago Press (1992)