Effects of Interstitials
Interstitials modify the physical and chemical properties of materials.
- Interstitial carbon atoms have a crucial role for the properties and processing of steels, in particular carbon steels.
- Impurity interstitials can be used e.g. for storage of hydrogen in metals.
- The amorphization of semiconductors such as silicon during ion irradiation is often explained by the buildup of a high concentration of interstitials leading eventually to the collapse of the lattice as it becomes unstable
- Creation of large amounts of interstitials in a solid can lead to a significant energy buildup, which on release can even lead to severe accidents in certain old types of nuclear reactors (Wigner effect). The high-energy states can be released by annealing.
- At least in face-centered cubic (FCC) lattice, interstitials have a large diaelastic softening effect on the material
- It has been proposed that interstitials are related to the onset of melting and the glass transition.
Read more about this topic: Interstitial Defect
Famous quotes containing the words effects of and/or effects:
“Like the effects of industrial pollution ... the AIDS crisis is evidence of a world in which nothing important is regional, local, limited; in which everything that can circulate does, and every problem is, or is destined to become, worldwide.”
—Susan Sontag (b. 1933)
“Perspective, as its inventor remarked, is a beautiful thing. What horrors of damp huts, where human beings languish, may not become picturesque through aerial distance! What hymning of cancerous vices may we not languish over as sublimest art in the safe remoteness of a strange language and artificial phrase! Yet we keep a repugnance to rheumatism and other painful effects when presented in our personal experience.”
—George Eliot [Mary Ann (or Marian)