Integrally Closed Domain - Noetherian Integrally Closed Domain

Noetherian Integrally Closed Domain

For a noetherian local domain A of dimension one, the following are equivalent.

  • A is integrally closed.
  • The maximal ideal of A is principal.
  • A is a discrete valuation ring (equivalently A is Dedekind.)
  • A is a regular local ring.

Let A be a noetherian integral domain. Then A is integrally closed if and only if (i) A is the intersection of all localizations over prime ideals of height 1 and (ii) the localization at a prime ideal of height 1 is a discrete valuation ring.

A noetherian ring is a Krull domain if and only if it is an integrally closed domain.

In the non-noetherian setting, one has the following: an integral domain is integrally closed if and only if it is the intersection of all valuation rings containing it.

Read more about this topic:  Integrally Closed Domain

Famous quotes containing the words closed and/or domain:

    My old Father used to have a saying that “If you make a bad bargain, hug it the tighter”; and it occurs to me, that if the bargain you have just closed [marriage] can possibly be called a bad one, it is certainly the most pleasant one for applying that maxim to, which my fancy can, by any effort, picture.
    Abraham Lincoln (1809–1865)

    When it had long since outgrown his purely medical implications and become a world movement which penetrated into every field of science and every domain of the intellect: literature, the history of art, religion and prehistory; mythology, folklore, pedagogy, and what not.
    Thomas Mann (1875–1955)