In commutative algebra, an integrally closed domain A is an integral domain whose integral closure in its field of fractions is A itself. Many well-studied domains are integrally closed: Fields, the ring of integers Z, unique factorization domains and regular local rings are all integrally closed.
To give a non-example, let (k a field). A and B have the same field of fractions, and B is the integral closure of A (since B is a UFD.) In other words, A is not integrally closed. This is related to the fact that the plane curve has a singularity at the origin.
Let A be an integrally closed domain with field of fractions K and let L be a finite extension of K. Then x in L is integral over A if and only if its minimal polynomial over K has coefficients in A. This implies in particular that an integral element over an integrally closed domain has a minimal polynomial over A: this is stronger than that an integral element satisfying some monic polynomial. In fact, the statement is false without "integrally closed" (consider )
Integrally closed domains also play a role in the hypothesis of the Going-down theorem. The theorem states that if A⊆B is an integral extension of domains and A is an integrally closed domain, then the going-down property holds for the extension A⊆B.
Note that integrally closed domain appear in the following chain of class inclusions:
- Commutative rings ⊃ integral domains ⊃ integrally closed domains ⊃ unique factorization domains ⊃ principal ideal domains ⊃ Euclidean domains ⊃ fields
Read more about Integrally Closed Domain: Examples, Noetherian Integrally Closed Domain, Normal Rings, Completely Integrally Closed Domains, "Integrally Closed" Under Constructions, See Also
Famous quotes containing the words closed and/or domain:
“Had I made capital on my prettiness, I should have closed the doors of public employment to women for many a year, by the very means which now makes them weak, underpaid competitors in the great workshop of the world.”
—Jane Grey Swisshelm (18151884)
“When it had long since outgrown his purely medical implications and become a world movement which penetrated into every field of science and every domain of the intellect: literature, the history of art, religion and prehistory; mythology, folklore, pedagogy, and what not.”
—Thomas Mann (18751955)