Integrally Closed Domain

In commutative algebra, an integrally closed domain A is an integral domain whose integral closure in its field of fractions is A itself. Many well-studied domains are integrally closed: Fields, the ring of integers Z, unique factorization domains and regular local rings are all integrally closed.

To give a non-example, let (k a field). A and B have the same field of fractions, and B is the integral closure of A (since B is a UFD.) In other words, A is not integrally closed. This is related to the fact that the plane curve has a singularity at the origin.

Let A be an integrally closed domain with field of fractions K and let L be a finite extension of K. Then x in L is integral over A if and only if its minimal polynomial over K has coefficients in A. This implies in particular that an integral element over an integrally closed domain has a minimal polynomial over A: this is stronger than that an integral element satisfying some monic polynomial. In fact, the statement is false without "integrally closed" (consider )

Integrally closed domains also play a role in the hypothesis of the Going-down theorem. The theorem states that if AB is an integral extension of domains and A is an integrally closed domain, then the going-down property holds for the extension AB.

Note that integrally closed domain appear in the following chain of class inclusions:

Commutative ringsintegral domainsintegrally closed domainsunique factorization domainsprincipal ideal domainsEuclidean domainsfields

Read more about Integrally Closed Domain:  Examples, Noetherian Integrally Closed Domain, Normal Rings, Completely Integrally Closed Domains, "Integrally Closed" Under Constructions, See Also

Famous quotes containing the words closed and/or domain:

    She was so overcome by the splendor of his achievement that she took him into the closet and selected a choice apple and delivered it to him, along with an improving lecture upon the added value and flavor a treat took to itself when it came without sin through virtuous effort. And while she closed with a Scriptural flourish, he “hooked” a doughnut.
    Mark Twain [Samuel Langhorne Clemens] (1835–1910)

    In the domain of Political Economy, free scientific inquiry meets not merely the same enemies as in all other domains. The peculiar nature of the material it deals with, summons as foes into the field of battle the most violent, mean and malignant passions of the human breast, the Furies of private interest.
    Karl Marx (1818–1883)