Integral Transform

In mathematics, an integral transform is any transform T of the following form:

The input of this transform is a function f, and the output is another function Tf. An integral transform is a particular kind of mathematical operator.

There are numerous useful integral transforms. Each is specified by a choice of the function K of two variables, the kernel function or nucleus of the transform.

Some kernels have an associated inverse kernel K−1(u, t) which (roughly speaking) yields an inverse transform:

A symmetric kernel is one that is unchanged when the two variables are permuted.

Read more about Integral Transform:  Motivation, History, Importance of Orthogonality, Usage Example, Table of Transforms, Different Domains, General Theory

Famous quotes containing the words integral and/or transform:

    Painting myself for others, I have painted my inward self with colors clearer than my original ones. I have no more made my book than my book has made me—a book consubstantial with its author, concerned with my own self, an integral part of my life; not concerned with some third-hand, extraneous purpose, like all other books.
    Michel de Montaigne (1533–1592)

    He had said that everything possessed
    The power to transform itself, or else,
    And what meant more, to be transformed.
    Wallace Stevens (1879–1955)