Inorganic Nanotube - Materials

Materials

Typical inorganic nanotube materials are 2D layered solids such as tungsten(IV) sulfide (WS2), molybdenum disulfide (MoS2) and tin(IV) sulfide (SnS2). WS2 and SnS2/tin(II) sulfide (SnS) nanotubes have been synthesized in macroscopic amounts. However, traditional ceramics like titanium dioxide (TiO2) and zinc oxide (ZnO) also form inorganic nanotubes. More recent nanotube and nanowire materials are transition metal/chalcogen/halogenides (TMCH), described by the formula TM6CyHz, where TM is transition metal (molybdenum, tungsten, tantalum, niobium), C is chalcogen (sulfur, selenium, tellurium), H is halogen (iodine), and the composition is given by 8.2<(y+z)<10. TMCH tubes can have a subnanometer-diameter, lengths tunable from hundreds of nanometers to tens of microns and show excellent dispersiveness owing to extremely weak mechanical coupling between the tubes.

In 2007, Chinese scientists announced the creation in the laboratory of copper and bismuth nanotubes.

Read more about this topic:  Inorganic Nanotube

Famous quotes containing the word materials:

    He was no specialist except in the relation of things.... He took most of his materials at second hand.... But no matter who mined the gold, the image and superscription are his.
    Woodrow Wilson (1856–1924)

    What is most interesting and valuable in it, however, is not the materials for the history of Pontiac, or Braddock, or the Northwest, which it furnishes; not the annals of the country, but the natural facts, or perennials, which are ever without date. When out of history the truth shall be extracted, it will have shed its dates like withered leaves.
    Henry David Thoreau (1817–1862)

    Young children learn in a different manner from that of older children and adults, yet we can teach them many things if we adapt our materials and mode of instruction to their level of ability. But we miseducate young children when we assume that their learning abilities are comparable to those of older children and that they can be taught with materials and with the same instructional procedures appropriate to school-age children.
    David Elkind (20th century)