Inference Engine - Data-driven Computation Versus Procedural Control

Data-driven Computation Versus Procedural Control

The inference engine control is based on the frequent reevaluation of the data store states, not on any static control structure of the program. The computation is often qualified as data-driven or pattern-directed in contrast to the more traditional procedural control. Rules can communicate with one another only by way of the data, whereas in traditional programming languages procedures and functions explicitly call one another. Unlike instructions, rules are not executed sequentially and it is not always possible to determine through inspection of a set of rules which rule will be executed first or cause the inference engine to terminate.

In contrast to a procedural computation, in which knowledge about the problem domain is mixed in with instructions about the flow of control—although object-oriented programming languages mitigate this entanglement—the inference engine model allows a more complete separation of the knowledge (in the rules) from the control (the inference engine).

Read more about this topic:  Inference Engine

Famous quotes containing the words computation and/or control:

    I suppose that Paderewski can play superbly, if not quite at his best, while his thoughts wander to the other end of the world, or possibly busy themselves with a computation of the receipts as he gazes out across the auditorium. I know a great actor, a master technician, can let his thoughts play truant from the scene ...
    Minnie Maddern Fiske (1865–1932)

    Knowledge in the form of an informational commodity indispensable to productive power is already, and will continue to be, a major—perhaps the major—stake in the worldwide competition for power. It is conceivable that the nation-states will one day fight for control of information, just as they battled in the past for control over territory, and afterwards for control over access to and exploitation of raw materials and cheap labor.
    Jean François Lyotard (b. 1924)