Inertia Tensor - Moment of Inertia Matrix

Moment of Inertia Matrix

The scalar moments of inertia appear as elements in a matrix when a system of particles is assembled into a rigid body that moves in three dimensional space. This inertia matrix appears in the calculation of the angular momentum, kinetic energy and resultant torque of the rigid system of particles.

An important application of the inertia matrix and Newton's laws of motion is the analysis of a spinning top. This is discussed in the article on Gyroscopic precession. A more detailed presentation can be found in the article on Euler's equations of motion.

Let the system of particles Pi, i = 1,..., n be located at the coordinates ri with velocities vi relative to a fixed reference frame. For a (possibly moving) reference point R, the relative positions are

and the (absolute) velocities are

where ω is the angular velocity of the system, and V is the velocity of R.

Read more about this topic:  Inertia Tensor

Famous quotes containing the words moment of, moment, inertia and/or matrix:

    At the thick of the dark
    the moment of the cold’s
    deepest plunge we brought branches
    cut from the green trees

    to fill our need,
    William Carlos Williams (1883–1963)

    By the artist’s seizing any one object from nature, that object no longer is part of nature. One can go so far as to say that the artist creates the object in that very moment by emphasizing its significant, characteristic, and interesting aspects or, rather, by adding the higher values.
    Johann Wolfgang Von Goethe (1749–1832)

    What is wrong with priests and popes is that instead of being apostles and saints, they are nothing but empirics who say “I know” instead of “I am learning,” and pray for credulity and inertia as wise men pray for scepticism and activity.
    George Bernard Shaw (1856–1950)

    As all historians know, the past is a great darkness, and filled with echoes. Voices may reach us from it; but what they say to us is imbued with the obscurity of the matrix out of which they come; and try as we may, we cannot always decipher them precisely in the clearer light of our day.
    Margaret Atwood (b. 1939)