Imidazoles - Preparation

Preparation

Imidazole was first reported in 1858, although various imidazole derivatives had been discovered as early as the 1840s. Its synthesis, as shown below, used glyoxal and formaldehyde in ammonia to form imidazole (or glyoxaline, as it was originally named). This synthesis, while producing relatively low yields, is still used for creating C-substituted imidazoles.

In one microwave modification, the reactants are benzil, benzaldehyde and ammonia in glacial acetic acid, forming 2,4,5-triphenylimidazole (Lophine).

Imidazole can be synthesized by numerous methods besides the Debus method. Many of these syntheses can also be applied to different substituted imidazoles and imidazole derivatives by varying the functional groups on the reactants. These methods are commonly categorized by which and how many bonds form to make the imidazole rings. For example, the Debus method forms the (1,2), (3,4), and (1,5) bonds in imidazole, using each reactant as a fragment of the ring, and thus this method would be a three-bond-forming synthesis. A small sampling of these methods is presented below.

Formation of one bond

The (1,5) or (3,4) bond can be formed by the reaction of an imidate and an α-aminoaldehyde or α-aminoacetal, resulting in the cyclization of an amidine to imidazole. The example below applies to imidazole when R=R1=Hydrogen.

Formation of two bonds

The (1,2) and (2,3) bonds can be formed by treating a 1,2-diaminoalkane, at high temperatures, with an alcohol, aldehyde, or carboxylic acid. A dehydrogenating catalyst, such as platinum on alumina, is required.

The (1,2) and (3,4) bonds can also be formed from N-substituted α-aminoketones and formamide with heat. The product will be a 1,4-disubstituted imidazole, but here since R=R1=Hydrogen, imidazole itself is the product. The yield of this reaction is moderate, but it seems to be the most effective method of making the 1,4 substitution.

Formation of four bonds

This is a general method that is able to give good yields for substituted imidazoles. In essence, it is an adaptation of the Debus method called the Debus-Radziszewski imidazole synthesis. The starting materials are substituted glyoxal, aldehyde, amine, and ammonia or an ammonium salt.

Formation from other heterocycles

Imidazole can be synthesized by the photolysis of 1-vinyltetrazole. This reaction will give substantial yields only if the 1-vinyltetrazole is made efficiently from an organotin compound, such as 2-tributylstannyltetrazole. The reaction, shown below, produces imidazole when R=R1=R2=Hydrogen.

Imidazole can also be formed in a vapor-phase reaction. The reaction occurs with formamide, ethylenediamine, and hydrogen over platinum on alumina, and it must take place between 340 and 480°C. This forms a very pure imidazole product.

Read more about this topic:  Imidazoles

Famous quotes containing the word preparation:

    With memory set smarting like a reopened wound, a man’s past is not simply a dead history, an outworn preparation of the present: it is not a repented error shaken loose from the life: it is a still quivering part of himself, bringing shudders and bitter flavours and the tinglings of a merited shame.
    George Eliot [Mary Ann (or Marian)

    It’s sad but true that if you focus your attention on housework and meal preparation and diapers, raising children does start to look like drudgery pretty quickly. On the other hand, if you see yourself as nothing less than your child’s nurturer, role model, teacher, spiritual guide, and mentor, your days take on a very different cast.
    Joyce Maynard (20th century)

    Living each day as a preparation for the next is an exciting way to live. Looking forward to something is much more fun than looking back at something—and much more constructive. If we can prepare ourselves so that we never have to think, “Oh, if I had only known, if I had only been ready,” our lives can really be the great adventure we so passionately want them to be.
    Hortense Odlum (1892–?)