Description
An ice-type model is a lattice model defined on a lattice of coordination number 4 - that is, each vertex of the lattice is connected by an edge to four "nearest neighbours". A state of the model consists of an arrow on each edge of the lattice, such that the number of arrows pointing inwards at each vertex is 2. This restriction on the arrow configurations is known as the ice rule.
For two-dimensional models, the lattice is taken to be the square lattice. For more realistic models, one can use a three-dimensional lattice appropriate to the material being considered; for example, the hexagonal ice lattice is used to analyse ice.
At any vertex, there are six configurations of the arrows which satisfy the ice rule (justifying the name "six-vertex model"). The valid configurations for the (two-dimensional) square lattice are the following:
The energy of a state is understood to be a function of the configurations at each vertex. For square lattices, one assumes that the total energy is given by
for some constants, where here denotes the number of vertices with the th configuration from the above figure. The value is the energy associated with vertex configuration number .
One aims to calculate the partition function of an ice-type model, which is given by the formula
where the sum is taken over all states of the model, is the energy of the state, is Boltzmann's constant, and is the system's temperature.
Typically, one is interested in the thermodynamic limit in which the number of vertices approaches infinity. In that case, one instead evaluates the free energy per vertex in the limit as, where is given by
Equivalently, one evaluates the partition function per vertex in the thermodynamic limit, where
The values and are related by
Read more about this topic: Ice-type Model
Famous quotes containing the word description:
“Whose are the truly labored sentences? From the weak and flimsy periods of the politician and literary man, we are glad to turn even to the description of work, the simple record of the months labor in the farmers almanac, to restore our tone and spirits.”
—Henry David Thoreau (18171862)
“It [Egypt] has more wonders in it than any other country in the world and provides more works that defy description than any other place.”
—Herodotus (c. 484424 B.C.)
“Once a child has demonstrated his capacity for independent functioning in any area, his lapses into dependent behavior, even though temporary, make the mother feel that she is being taken advantage of....What only yesterday was a description of the childs stage in life has become an indictment, a judgment.”
—Elaine Heffner (20th century)