Series Representation
A convergent series representation defined for q > −1 and any complex s ≠ 1 was given by Helmut Hasse in 1930:
This series converges uniformly on compact subsets of the s-plane to an entire function. The inner sum may be understood to be the nth forward difference of ; that is,
where Δ is the forward difference operator. Thus, one may write
Read more about this topic: Hurwitz Zeta Function
Famous quotes containing the word series:
“Depression moods lead, almost invariably, to accidents. But, when they occur, our mood changes again, since the accident shows we can draw the world in our wake, and that we still retain some degree of power even when our spirits are low. A series of accidents creates a positively light-hearted state, out of consideration for this strange power.”
—Jean Baudrillard (b. 1929)