Hurwitz Zeta Function - Relation To Dirichlet L-functions

Relation To Dirichlet L-functions

At rational arguments the Hurwitz zeta function may be expressed as a linear combination of Dirichlet L-functions and vice versa: The Hurwitz zeta function coincides with Riemann's zeta function ζ(s) when q = 1, when q = 1/2 it is equal to (2s−1)ζ(s), and if q = n/k with k > 2, (n,k) > 1 and 0 < n < k, then

the sum running over all Dirichlet characters mod k. In the opposite direction we have the linear combination

There is also the multiplication theorem

of which a useful generalization is the distribution relation

(This last form is valid whenever q a natural number and 1 − qa is not.)

Read more about this topic:  Hurwitz Zeta Function

Famous quotes containing the words relation to and/or relation:

    Concord is just as idiotic as ever in relation to the spirits and their knockings. Most people here believe in a spiritual world ... in spirits which the very bullfrogs in our meadows would blackball. Their evil genius is seeing how low it can degrade them. The hooting of owls, the croaking of frogs, is celestial wisdom in comparison.
    Henry David Thoreau (1817–1862)

    To be a good enough parent one must be able to feel secure in one’s parenthood, and one’s relation to one’s child...The security of the parent about being a parent will eventually become the source of the child’s feeling secure about himself.
    Bruno Bettelheim (20th century)