Hipparchus - Geometry, Trigonometry, and Other Mathematical Techniques

Geometry, Trigonometry, and Other Mathematical Techniques

Hipparchus was recognized as the first mathematician known to have possessed a trigonometric table, which he needed when computing the eccentricity of the orbits of the Moon and Sun. He tabulated values for the chord function, which gives the length of the chord for each angle. He did this for a circle with a circumference of 21600 and a radius (rounded) of 3438 units: this circle has a unit length of 1 arc minute along its perimeter. He tabulated the chords for angles with increments of 7.5°. In modern terms, the chord of an angle equals twice the sine of half of the angle, i.e.:

chord(A) = 2 sin(A/2).

He described the chord table in a work, now lost, called Tōn en kuklōi eutheiōn (Of Lines Inside a Circle) by Theon of Alexandria (4th century) in his commentary on the Almagest I.10; some claim his table may have survived in astronomical treatises in India, for instance the Surya Siddhanta. Trigonometry was a significant innovation, because it allowed Greek astronomers to solve any triangle, and made it possible to make quantitative astronomical models and predictions using their preferred geometric techniques.

For his chord table Hipparchus must have used a better approximation for π than the one from Archimedes of between 3 + 1/7 and 3 + 10/71; perhaps he had the one later used by Ptolemy: 3;8:30 (sexagesimal) (Almagest VI.7); but it is not known if he computed an improved value himself.

But some scholars do not believe Arayabhatta's Sin table has anything to do with Hipparchus's chord table which does not exist today. Some scholars do not agree with this hypothesis that Hipparchus constructed a chord table. Bo. C Klintberg states " With mathematical reconstructions and philosophical arguments I show that Toomer's 1973 paper never contained any conclusive evidence for his claims that Hipparchus had a 3438'-based chord table, and that the Indians used that table to compute their sine tables. Recalculating Toomer's reconstructions with a 3600' radius -- i.e. the radius of the chord table in Ptolemy's Almagest, expressed in 'minutes' instead of 'degrees' -- generates Hipparchan-like ratios similar to those produced by a 3438' radius. It is therefore possible that the radius of Hipparchus's chord table was 3600', and that the Indians independently constructed their 3438'-based sine table."

Hipparchus could construct his chord table using the Pythagorean theorem and a theorem known to Archimedes. He also might have developed and used the theorem in plane geometry called Ptolemy's theorem, because it was proved by Ptolemy in his Almagest (I.10) (later elaborated on by Carnot).

Hipparchus was the first to show that the stereographic projection is conformal, and that it transforms circles on the sphere that do not pass through the center of projection to circles on the plane. This was the basis for the astrolabe.

Besides geometry, Hipparchus also used arithmetic techniques developed by the Chaldeans. He was one of the first Greek mathematicians to do this, and in this way expanded the techniques available to astronomers and geographers.

There are several indications that Hipparchus knew spherical trigonometry, but the first surviving text of it is that of Menelaus of Alexandria in the 1st century, who on that basis is now commonly credited with its discovery. (Previous to the finding of the proofs of Menelaus a century ago, Ptolemy was credited with the invention of spherical trigonometry.) Ptolemy later used spherical trigonometry to compute things like the rising and setting points of the ecliptic, or to take account of the lunar parallax. Hipparchus may have used a globe for these tasks, reading values off coordinate grids drawn on it, or he may have made approximations from planar geometry, or perhaps used arithmetical approximations developed by the Chaldeans. He might have used spherical trigonometry.

Aubrey Diller has shown that the clima calculations which Strabo preserved from Hipparchus were performed by spherical trigonometry with the sole accurate obliquity known to have been used by ancient astronomers, 23°40'. All thirteen clima figures agree with Diller's proposal. Further confirming his contention is the finding that the big errors in Hipparchus's longitude of Regulus and both longitudes of Spica agree to a few minutes in all three instances with a theory that he took the wrong sign for his correction for parallax when using eclipses for determining stars' positions.

Read more about this topic:  Hipparchus

Famous quotes containing the words mathematical and/or techniques:

    All science requires mathematics. The knowledge of mathematical things is almost innate in us.... This is the easiest of sciences, a fact which is obvious in that no one’s brain rejects it; for laymen and people who are utterly illiterate know how to count and reckon.
    Roger Bacon (c. 1214–c. 1294)

    It is easy to lose confidence in our natural ability to raise children. The true techniques for raising children are simple: Be with them, play with them, talk to them. You are not squandering their time no matter what the latest child development books say about “purposeful play” and “cognitive learning skills.”
    Neil Kurshan (20th century)