Heat Exchanger - A Model of A Simple Heat Exchanger

A Model of A Simple Heat Exchanger

A simple heat exchanger might be thought of as two straight pipes with fluid flow, which are thermally connected. Let the pipes be of equal length L, carrying fluids with heat capacity (energy per unit mass per unit change in temperature) and let the mass flow rate of the fluids through the pipes be (mass per unit time), where the subscript i applies to pipe 1 or pipe 2.

Temperature profiles for the pipes are and where x is the distance along the pipe. Assume a steady state, so that the temperature profiles are not functions of time. Assume also that the only transfer of heat from a small volume of fluid in one pipe is to the fluid element in the other pipe at the same position. There is no transfer of heat along a pipe due to temperature differences in that pipe. By Newton's law of cooling the rate of change in energy of a small volume of fluid is proportional to the difference in temperatures between it and the corresponding element in the other pipe:

where is the thermal energy per unit length and γ is the thermal connection constant per unit length between the two pipes. This change in internal energy results in a change in the temperature of the fluid element. The time rate of change for the fluid element being carried along by the flow is:

where is the "thermal mass flow rate". The differential equations governing the heat exchanger may now be written as:

Note that, since the system is in a steady state, there are no partial derivatives of temperature with respect to time, and since there is no heat transfer along the pipe, there are no second derivatives in x as is found in the heat equation. These two coupled first-order differential equations may be solved to yield:

where, and A and B are two as yet undetermined constants of integration. Let and be the temperatures at x=0 and let and be the temperatures at the end of the pipe at x=L. Define the average temperatures in each pipe as:

Using the solutions above, these temperatures are:

Choosing any two of the temperatures above eliminates the constants of integration, letting us find the other four temperatures. We find the total energy transferred by integrating the expressions for the time rate of change of internal energy per unit length:

By the conservation of energy, the sum of the two energies is zero. The quantity is known as the Log mean temperature difference, and is a measure of the effectiveness of the heat exchanger in transferring heat energy.

Read more about this topic:  Heat Exchanger

Famous quotes containing the words model, simple, heat and/or exchanger:

    If the man who paints only the tree, or flower, or other surface he sees before him were an artist, the king of artists would be the photographer. It is for the artist to do something beyond this: in portrait painting to put on canvas something more than the face the model wears for that one day; to paint the man, in short, as well as his features.
    James Mcneill Whistler (1834–1903)

    Economy, prudence, and a simple life are the sure masters of need, and will often accomplish that which, their opposites, with a fortune at hand, will fail to do.
    Clara Barton (1821–1912)

    The Soul rules over matter. Matter may pass away like a mote in the sunbeam, may be absorbed into the immensity of God, as a mist is absorbed into the heat of the Sun—but the soul is the kingdom of God, the abode of love, of truth, of virtue.
    Ralph Waldo Emerson (1803–1882)

    I want to know whether you are a person devoted to creating or to exchanging in some respect or other: as a creator you belong to the free, as an exchanger you are their slave and instrument.
    Friedrich Nietzsche (1844–1900)