Self-similar Sets
Many sets defined by a self-similarity condition have dimensions which can be determined explicitly. Roughly, a set E is self-similar if it is the fixed point of a set-valued transformation ψ, that is ψ(E) = E, although the exact definition is given below.
Theorem. Suppose
are contractive mappings on Rn with contraction constant rj < 1. Then there is a unique non-empty compact set A such that
The theorem follows from Stefan Banach's contractive mapping fixed point theorem applied to the complete metric space of non-empty compact subsets of Rn with the Hausdorff distance.
Read more about this topic: Hausdorff Dimension
Famous quotes containing the word sets:
“Until, accustomed to disappointments, you can let yourself rule and be ruled by these strings or emanations that connect everything together, you havent fully exorcised the demon of doubt that sets you in motion like a rocking horse that cannot stop rocking.”
—John Ashbery (b. 1927)