Hardy Space - Hardy Spaces For The Upper Half Plane

Hardy Spaces For The Upper Half Plane

It is possible to define Hardy spaces on other domains than the disc, and in many applications Hardy spaces on a complex half-plane (usually the right half-plane or upper half-plane) are used.

The Hardy space on the upper half-plane is defined to be the space of holomorphic functions f on with bounded (quasi-)norm, the norm being given by

The corresponding is defined as functions of bounded norm, with the norm given by

Although the unit disk and the upper half-plane can be mapped to one another by means of Möbius transformations, they are not interchangeable as domains for Hardy spaces. Contributing to this difference is the fact that the unit circle has finite (one-dimensional) Lebesgue measure while the real line does not. However, for H2, one may still state the following theorem: Given the Möbius transformation with

then there is an isometric isomorphism

with

Read more about this topic:  Hardy Space

Famous quotes containing the words hardy, spaces, upper and/or plane:

    The value of old age depends upon the person who reaches it. To some men of early performance it is useless. To others, who are late to develop, it just enables them to finish the job.
    —Thomas Hardy (1840–1928)

    Le silence éternel de ces espaces infinis m’effraie. The eternal silence of these infinite spaces frightens me.
    Blaise Pascal (1623–1662)

    The enemy are no match for us in a fair fight.... The young men ... of the upper class are kind-hearted, good-natured fellows, who are unfit as possible for the business they are in. They have courage but no endurance, enterprise, or energy. The lower class are cowardly, cunning, and lazy. The height of their ambition is to shoot a Yankee from some place of safety.
    Rutherford Birchard Hayes (1822–1893)

    As for the dispute about solitude and society, any comparison is impertinent. It is an idling down on the plane at the base of a mountain, instead of climbing steadily to its top.
    Henry David Thoreau (1817–1862)