Griesmer Bound - Proof

Proof

Let denote the minimum length of a binary code of dimension k and distance d. Let C be such a code. We want to show that .

Let G be a generator matrix of C. We can always suppose that the first row of G is of the form r = (1, ..., 1, 0, ..., 0) with weight d.

G= \begin{bmatrix}
1 & \dots & 1 & 0 & \dots & 0 \\
\ast & \ast & \ast & & G' & \\
\end{bmatrix}

The matrix G' generates a code C', which is called the residual code of C. C' has obviously dimension and length . C' has a distance d', but we don't know it. Let s.t. . There exists a vector s.t. the concatenation . Then . On the other hand, also, since and is linear, so . But

,

so this becomes . By summing this with, we obtain . But, so we get . This implies, therefore (due to the integrality of n'), so that . By induction over k we will eventually get (note that at any step the dimension decreases by 1 and the distance is halved, and we use the identity for any integer a and positive integer k).

Read more about this topic:  Griesmer Bound

Famous quotes containing the word proof:

    If any proof were needed of the progress of the cause for which I have worked, it is here tonight. The presence on the stage of these college women, and in the audience of all those college girls who will some day be the nation’s greatest strength, will tell their own story to the world.
    Susan B. Anthony (1820–1906)

    The proof of a poet is that his country absorbs him as affectionately as he has absorbed it.
    Walt Whitman (1819–1892)

    If some books are deemed most baneful and their sale forbid, how, then, with deadlier facts, not dreams of doting men? Those whom books will hurt will not be proof against events. Events, not books, should be forbid.
    Herman Melville (1819–1891)