Graph Dynamical System - Stochastic Graph Dynamical Systems

Stochastic Graph Dynamical Systems

From, e.g., the point of view of applications it is interesting to consider the case where one or more of the components of a GDS contains stochastic elements. Motivating applications could include processes that are not fully understood (e.g. dynamics within a cell) and where certain aspects for all practical purposes seem to behave according to some probability distribution. There are also applications governed by deterministic principles whose description is so complex or unwieldy that it makes sense to consider probabilistic approximations.

Every element of a graph dynamical system can be made stochastic in several ways. For example, in a sequential dynamical system the update sequence can be made stochastic. At each iteration step one may choose the update sequence w at random from a given distribution of update sequences with corresponding probabilities. The matching probability space of update sequences induces a probability space of SDS maps. A natural object to study in this regard is the Markov chain on state space induced by this collection of SDS maps. This case is referred to as update sequence stochastic GDS and is motivated by, e.g., processes where "events" occur at random according to certain rates (e.g. chemical reactions), synchronization in parallel computation/discrete event simulations, and in computational paradigms described later.

This specific example with stochastic update sequence illustrates two general facts for such systems: when passing to a stochastic graph dynamical system one is generally led to (1) a study of Markov chains (with specific structure governed by the constituents of the GDS), and (2) the resulting Markov chains tend to be large having an exponential number of states. A central goal in the study of stochastic GDS is to be able to derive reduced models.

One may also consider the case where the vertex functions are stochastic, i.e., function stochastic GDS. For example, Random Boolean networks are examples of function stochastic GDS using a synchronous update scheme and where the state space is K = {0, 1}. Finite probabilistic cellular automata (PCA) is another example of function stochastic GDS. In principle the class of Interacting particle systems (IPS) covers finite and infinite PCA, but in practice the work on IPS is largely concerned with the infinite case since this allows one to introduce more interesting topologies on state space.

Read more about this topic:  Graph Dynamical System

Famous quotes containing the words graph and/or systems:

    In this Journal, my pen is a delicate needle point, tracing out a graph of temperament so as to show its daily fluctuations: grave and gay, up and down, lamentation and revelry, self-love and self-disgust. You get here all my thoughts and opinions, always irresponsible and often contradictory or mutually exclusive, all my moods and vapours, all the varying reactions to environment of this jelly which is I.
    W.N.P. Barbellion (1889–1919)

    Before anything else, we need a new age of Enlightenment. Our present political systems must relinquish their claims on truth, justice and freedom and have to replace them with the search for truth, justice, freedom and reason.
    Friedrich Dürrenmatt (1921–1990)