Graph Dynamical System

Graph Dynamical System

In mathematics, the concept of graph dynamical systems can be used to capture a wide range of processes taking place on graphs or networks. A major theme in the mathematical and computational analysis of GDSs is to relate their structural properties (e.g. the network connectivity) and the global dynamics that result.

The work on GDSs considers finite graphs and finite state spaces. As such, the research typically involves techniques from, e.g., graph theory, combinatorics, algebra, and dynamical systems rather than differential geometry. In principle, one could define and study GDSs over an infinite graph (e.g. cellular automata or Probabilistic Cellular Automata over or interacting particle systems when some randomness is included), as well as GDSs with infinite state space (e.g. as in coupled map lattices); see, for example, Wu. In the following, everything is implicitly assumed to be finite unless stated otherwise.

Read more about Graph Dynamical System:  Formal Definition, Generalized Cellular Automata (GCA), Sequential Dynamical Systems (SDS), Stochastic Graph Dynamical Systems, Applications, See Also

Famous quotes containing the words graph and/or system:

    When producers want to know what the public wants, they graph it as curves. When they want to tell the public what to get, they say it in curves.
    Marshall McLuhan (1911–1980)

    There are obvious places in which government can narrow the chasm between haves and have-nots. One is the public schools, which have been seen as the great leveler, the authentic melting pot. That, today, is nonsense. In his scathing study of the nation’s public school system entitled “Savage Inequalities,” Jonathan Kozol made manifest the truth: that we have a system that discriminates against the poor in everything from class size to curriculum.
    Anna Quindlen (b. 1952)