Representing Integers As Golden Ratio Base Numbers
We can either consider our integer to be the (only) digit of a nonstandard base-φ numeral, and standardize it, or do the following:
1×1 = 1, φ × φ = 1 + φ and 1/φ = −1 + φ. Therefore, we can compute
- (a + bφ) + (c + dφ) = ((a + c) + (b + d)φ),
- (a + bφ) − (c + dφ) = ((a − c) + (b − d)φ)
and
- (a + bφ) × (c + dφ) = ((ac + bd) + (ad + bc + bd)φ).
So, using integer values only, we can add, subtract and multiply numbers of the form (a + bφ), and even represent positive and negative integer powers of φ. (Note that φ−1 = 1/φ.)
(a + bφ) > (c + dφ) if and only if 2(a − c) − (d − b) > (d − b) × √5. If one side is negative, the other positive, the comparison is trivial. Otherwise, square both sides, to get an integer comparison, reversing the comparison direction if both sides were negative. On squaring both sides, the √5 is replaced with the integer 5.
So, using integer values only, we can also compare numbers of the form (a + bφ).
- To convert an integer x to a base-φ number, note that x = (x + 0φ).
- Subtract the highest power of φ, which is still smaller than the number we have, to get our new number, and record a "1" in the appropriate place in the resulting base-φ number.
- Unless our number is 0, go to step 2.
- Finished.
The above procedure will never result in the sequence "11", since 11φ = 100φ, so getting a "11" would mean we missed a "1" prior to the sequence "11".
Start, e. g., with integer=5, with the result so far being ...00000.00000...φ
Highest power of φ ≤ 5 is φ3 = 1 + 2φ ≈ 4.236067977
Subtracting this from 5, we have 5 - (1 + 2φ) = 4 − 2φ ≈ 0.763932023..., the result so far being 1000.00000...φ
Highest power of φ ≤ 4 − 2φ ≈ 0.763932023... is φ−1 = −1 + 1φ ≈ 0.618033989...
Subtracting this from 4 − 2φ ≈ 0.763932023..., we have 4 − 2φ − (−1 + 1φ) = 5 − 3φ ≈ 0.145898034..., the result so far being 1000.10000...φ
Highest power of φ ≤ 5 − 3φ ≈ 0.145898034... is φ−4 = 5 − 3φ ≈ 0.145898034...
Subtracting this from 5 − 3φ ≈ 0.145898034..., we have 5 − 3φ − (5 − 3φ) = 0 + 0φ = 0, with the final result being 1000.1001φ.
Read more about this topic: Golden Ratio Base
Famous quotes containing the words representing, golden, ratio, base and/or numbers:
“There are people who are so presumptuous that they know no other way to praise a greatness that they publicly admire than by representing it as a preliminary stage and bridge leading to themselves.”
—Friedrich Nietzsche (18441900)
“Come live with me, and be my love,
And we will some new pleasures prove
Of golden sands, and crystal brooks,
With silken lines, and silver hooks.”
—John Donne (15721631)
“Personal rights, universally the same, demand a government framed on the ratio of the census: property demands a government framed on the ratio of owners and of owning.”
—Ralph Waldo Emerson (18031882)
“The base of all artistic genius is the power of conceiving humanity in a new, striking, rejoicing way, of putting a happy world of its own creation in place of the meaner world of common days, of generating around itself an atmosphere with a novel power of refraction, selecting, transforming, recombining the images it transmits, according to the choice of the imaginative intellect. In exercising this power, painting and poetry have a choice of subject almost unlimited.”
—Walter Pater (18391894)
“One murder makes a villain, millions a hero. Numbers sanctify, my good fellow.”
—Charlie Chaplin (18891977)