Glossary of Arithmetic and Diophantine Geometry

Glossary Of Arithmetic And Diophantine Geometry

This is a glossary of arithmetic and Diophantine geometry in mathematics, areas growing out of the traditional study of Diophantine equations to encompass large parts of number theory and algebraic geometry. Much of the theory is in the form of proposed conjectures, which can be related at various levels of generality.

Diophantine geometry in general is the study of algebraic varieties V over fields K that are finitely generated over their prime fields—including as of special interest number fields and finite fields—and over local fields. Of those, only the complex numbers are algebraically closed; over any other K the existence of points of V with co-ordinates in K is something to be proved and studied as an extra topic, even knowing the geometry of V.

Arithmetical or arithmetic (algebraic) geometry is a field with a less elementary definition. After the advent of scheme theory it could reasonably be defined as the study of Alexander Grothendieck's schemes of finite type over the spectrum of the ring of integers Z. This point of view has been very influential for around half a century; it has very widely been regarded as fulfilling Leopold Kronecker's ambition to have number theory operate only with rings that are quotients of polynomial rings over the integers (to use the current language of commutative algebra). In fact scheme theory uses all sorts of auxiliary constructions that do not appear at all 'finitistic', so that there is little connection with 'constructivist' ideas as such. That scheme theory may not be the last word appears from continuing interest in the 'infinite primes' (the real and complex local fields), which do not come from prime ideals as the p-adic numbers do.

Contents: Top 0–9 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Read more about Glossary Of Arithmetic And Diophantine Geometry:  A, B, C, D, E, F, G, H, I, K, L, M, N, O, Q, R, S, T, U, V, W

Famous quotes containing the words arithmetic and/or geometry:

    I hope I may claim in the present work to have made it probable that the laws of arithmetic are analytic judgments and consequently a priori. Arithmetic thus becomes simply a development of logic, and every proposition of arithmetic a law of logic, albeit a derivative one. To apply arithmetic in the physical sciences is to bring logic to bear on observed facts; calculation becomes deduction.
    Gottlob Frege (1848–1925)

    ... geometry became a symbol for human relations, except that it was better, because in geometry things never go bad. If certain things occur, if certain lines meet, an angle is born. You cannot fail. It’s not going to fail; it is eternal. I found in rules of mathematics a peace and a trust that I could not place in human beings. This sublimation was total and remained total. Thus, I’m able to avoid or manipulate or process pain.
    Louise Bourgeois (b. 1911)