For Defective Matrices
Generalized eigenvectors are needed to form a complete basis of a defective matrix, which is a matrix in which there are fewer linearly independent eigenvectors than eigenvalues (counting multiplicity). Over an algebraically closed field, the generalized eigenvectors do allow choosing a complete basis, as follows from the Jordan form of a matrix.
In particular, suppose that an eigenvalue λ of a matrix A has an algebraic multiplicity m but fewer corresponding eigenvectors. We form a sequence of m eigenvectors and generalized eigenvectors that are linearly independent and satisfy
for some coefficients, for . It follows that
The vectors can always be chosen, but are not uniquely determined by the above relations. If the geometric multiplicity (dimension of the eigenspace) of λ is p, one can choose the first p vectors to be eigenvectors, but the remaining m − p vectors are only generalized eigenvectors.
Read more about this topic: Generalized Eigenvector
Famous quotes containing the word defective:
“Now, since our condition accommodates things to itself, and transforms them according to itself, we no longer know things in their reality; for nothing comes to us that is not altered and falsified by our Senses. When the compass, the square, and the rule are untrue, all the calculations drawn from them, all the buildings erected by their measure, are of necessity also defective and out of plumb. The uncertainty of our senses renders uncertain everything that they produce.”
—Michel de Montaigne (15331592)