Generalized Complex Structure - Relation To G-structures

Relation To G-structures

Some of the almost structures in generalized complex geometry may be rephrased in the language of G-structures. The word "almost" is removed if the structure is integrable.

The bundle (TT*) C with the above inner product is a O(2n, 2n) structure. A generalized almost complex structure is a reduction of this structure to a U(n, n) structure. Therefore the space of generalized complex structures is the coset

A generalized almost Kähler structure is a pair of commuting generalized complex structures such that minus the product of the corresponding tensors is a positive definite metric on (T T*)C. Generalized Kähler structures are reductions of the structure group to U(n)U(n). Generalized Kähler manifolds, and their twisted counterparts, are equivalent to the bihermitian manifolds discovered by Sylvester James Gates, Chris Hull and Martin Roček in the context of 2-dimensional supersymmetric quantum field theories in 1984.

Finally, a generalized almost Calabi-Yau metric structure is a further reduction of the structure group to SU(n)SU(n).

Read more about this topic:  Generalized Complex Structure

Famous quotes containing the words relation to and/or relation:

    Science is the language of the temporal world; love is that of the spiritual world. Man, indeed, describes more than he explains; while the angelic spirit sees and understands. Science saddens man; love enraptures the angel; science is still seeking, love has found. Man judges of nature in relation to itself; the angelic spirit judges of it in relation to heaven. In short to the spirits everything speaks.
    Honoré De Balzac (1799–1850)

    To criticize is to appreciate, to appropriate, to take intellectual possession, to establish in fine a relation with the criticized thing and to make it one’s own.
    Henry James (1843–1916)