Generalised Circle - Equation in The Extended Complex Plane

Equation in The Extended Complex Plane

The extended plane of inversive geometry can be identified with the extended complex plane, so that equations of complex numbers can be used to describe lines, circles and inversions.

A circle Γ is the set of points z in a plane that lie at radius r from a center point γ.

Using the complex plane, we can treat γ as a complex number and circle Γ as a set of complex numbers.

Using the property that a complex number multiplied by its conjugate gives us the square of the modulus of the number, and that its modulus is its Euclidean distance from the origin, we can express the equation for Γ as follows:

We can multiply this by a real constant A to get an equation of the form


A z \bar z + B z + C \bar z + D = 0

where A and D are real, and B and C are complex conjugates. Reversing the steps, we see that in order for this to be a circle, the radius squared must be equal to BC/A^2 - D/A > 0. So the above equation defines a generalized circle whenever AD < BC. Note that when A is zero, this equation defines a straight line.

Read more about this topic:  Generalised Circle

Famous quotes containing the words equation, extended, complex and/or plane:

    A nation fights well in proportion to the amount of men and materials it has. And the other equation is that the individual soldier in that army is a more effective soldier the poorer his standard of living has been in the past.
    Norman Mailer (b. 1923)

    Crotchless trouser allows wearer to show private parts in public. Neoprene-coated nylon pack cloth is stain resistant, water repellent and tickles thighs when walking. Tan-olive shade goes with most fetishes. Adjustable straps attach to belt for good fit and easy up-down. Pant is suitable for fast exposures as well as extended engagements. One size fits all.
    Alfred Gingold, U.S. humorist. Items From Our Catalogue, “Flasher’s Pants,” Avon Books (1982)

    Specialization is a feature of every complex organization, be it social or natural, a school system, garden, book, or mammalian body.
    Catharine R. Stimpson (b. 1936)

    At the moment when a man openly makes known his difference of opinion from a well-known party leader, the whole world thinks that he must be angry with the latter. Sometimes, however, he is just on the point of ceasing to be angry with him. He ventures to put himself on the same plane as his opponent, and is free from the tortures of suppressed envy.
    Friedrich Nietzsche (1844–1900)