A set of at least points in -dimensional Euclidean space is said to be in general linear position (or just general position) if no hyperplane contains more than points — i.e. the points do not satisfy any more linear relations than they must. A set containing points for is in general linear position if and only if no -dimensional flat contains all points.
A set of points in general linear position is also said to be affinely independent (this is the affine analog of linear independence of vectors, or more precisely of maximal rank), and points in general linear position in affine d-space are an affine basis. See affine transformation for more.
Similarly, n vectors in an n-dimensional vector space are linearly independent if and only if the points they define in projective space (of dimension ) are in general linear position.
If a set of points is not in general linear position, it is called a degenerate case or degenerate configuration — they satisfy a linear relation that need not always hold.
A fundamental application is that, in the plane, five points determine a conic, as long as the points are in general linear position (no three are collinear).
Read more about this topic: General Position
Famous quotes containing the words general and/or position:
“I suggested to them also the great desirability of a general knowledge on the Island of the English language. They are under an English speaking government and are a part of the territory of an English speaking nation.... While I appreciated the desirability of maintaining their grasp on the Spanish language, the beauty of that language and the richness of its literature, that as a practical matter for them it was quite necessary to have a good comprehension of English.”
—Calvin Coolidge (18721933)
“Heaven gives its glimpses only to those
Not in position to look too close.”
—Robert Frost (18741963)