Frobenius Group - Structure

Structure

The subgroup H of a Frobenius group G fixing a point of the set X is called the Frobenius complement. The identity element together with all elements not in any conjugate of H form a normal subgroup called the Frobenius kernel K. (This is a theorem due to Frobenius.) The Frobenius group G is the semidirect product of K and H:

.

Both the Frobenius kernel and the Frobenius complement have very restricted structures. J. G. Thompson (1960) proved that the Frobenius kernel K is a nilpotent group. If H has even order then K is abelian. The Frobenius complement H has the property that every subgroup whose order is the product of 2 primes is cyclic; this implies that its Sylow subgroups are cyclic or generalized quaternion groups. Any group such that all Sylow subgroups are cyclic is called a Z-group, and in particular must be a metacyclic group: this means it is the extension of two cyclic groups. If a Frobenius complement H is not solvable then Zassenhaus showed that it has a normal subgroup of index 1 or 2 that is the product of SL2(5) and a metacyclic group of order coprime to 30. In particular, if a Frobenius complement coincides with its derived subgroup, then it is isomorphic with SL(2,5). If a Frobenius complement H is solvable then it has a normal metacyclic subgroup such that the quotient is a subgroup of the symmetric group on 4 points. A finite group is a Frobenius complement if and only if it has a faithful, finite-dimensional representation over a finite field in which non-identity group elements correspond to linear transformations without nonzero fixed points.

The Frobenius kernel K is uniquely determined by G as it is the Fitting subgroup, and the Frobenius complement is uniquely determined up to conjugacy by the Schur-Zassenhaus theorem. In particular a finite group G is a Frobenius group in at most one way.

Read more about this topic:  Frobenius Group

Famous quotes containing the word structure:

    The verbal poetical texture of Shakespeare is the greatest the world has known, and is immensely superior to the structure of his plays as plays. With Shakespeare it is the metaphor that is the thing, not the play.
    Vladimir Nabokov (1899–1977)

    I’m a Sunday School teacher, and I’ve always known that the structure of law is founded on the Christian ethic that you shall love the Lord your God and your neighbor as yourself—a very high and perfect standard. We all know the fallibility of man, and the contentions in society, as described by Reinhold Niebuhr and many others, don’t permit us to achieve perfection.
    Jimmy Carter (James Earl Carter, Jr.)

    There is no such thing as a language, not if a language is anything like what many philosophers and linguists have supposed. There is therefore no such thing to be learned, mastered, or born with. We must give up the idea of a clearly defined shared structure which language-users acquire and then apply to cases.
    Donald Davidson (b. 1917)