Fractional Ideal - Definition and Basic Results

Definition and Basic Results

Let R be an integral domain, and let K be its field of fractions. A fractional ideal of R is an R-submodule I of K such that there exists a non-zero rR such that rIR. The element r can be thought of as clearing out the denominators in I. The principal fractional ideals are those R-submodules of K generated by a single nonzero element of K. A fractional ideal I is contained in R if, and only if, it is an ('integral') ideal of R.

A fractional ideal I is called invertible if there is another fractional ideal J such that IJ = R (where IJ = { a1b1 + a2b2 + ... + anbn : aiI, biJ, nZ>0 } is called the product of the two fractional ideals). The set of invertible fractional ideals form an abelian group with respect to above product, where the identity is the unit ideal R itself. This group is called the group of fractional ideals of R. The principal fractional ideals form a subgroup. A (nonzero) fractional ideal is invertible if, and only if, it is projective as an R-module.

Every finitely generated R-submodule of K is a fractional ideal and if R is noetherian these are all the fractional ideals of R.

Read more about this topic:  Fractional Ideal

Famous quotes containing the words definition, basic and/or results:

    Scientific method is the way to truth, but it affords, even in
    principle, no unique definition of truth. Any so-called pragmatic
    definition of truth is doomed to failure equally.
    Willard Van Orman Quine (b. 1908)

    ... the basic experience of everyone is the experience of human limitation.
    Flannery O’Connor (1925–1964)

    Silence is to all creatures thus attacked the only means of salvation; it fatigues the Cossack charges of the envious, the enemy’s savage ruses; it results in a cruising and complete victory.
    Honoré De Balzac (1799–1850)