Four-dimensional Space - History

History

See also: n-dimensional space#History

The possibility of spaces with dimensions higher than three was first studied by mathematicians in the 19th century. In 1827 Möbius realized that a fourth dimension would allow a three-dimensional form to be rotated onto its mirror-image, and by 1853 Ludwig Schläfli had discovered many polytopes in higher dimensions, although his work was not published until after his death. Higher dimensions were soon put on firm footing by Bernhard Riemann's 1854 Habilitationsschrift, Über die Hypothesen welche der Geometrie zu Grunde liegen, in which he considered a "point" to be any sequence of coordinates (x1, ..., xn). The possibility of geometry in higher dimensions, including four dimensions in particular, was thus established.

An arithmetic of four dimensions called quaternions was defined by William Rowan Hamilton in 1843. This associative algebra was the source of the science of vector analysis in three dimensions as recounted in A History of Vector Analysis.

One of the first major expositors of the fourth dimension was Charles Howard Hinton, starting in 1880 with his essay What is the Fourth Dimension?; published in the Dublin University magazine. He coined the terms tesseract, ana and kata in his book A New Era of Thought, and introduced a method for visualising the fourth dimension using cubes in the book Fourth Dimension.

In 1908, Hermann Minkowski presented a paper consolidating the role of time as the fourth dimension of spacetime, the basis for Einstein's theories of special and general relativity. But the geometry of spacetime, being non-Euclidean, is profoundly different from that popularised by Hinton. The study of such Minkowski spaces required new mathematics quite different from that of four-dimensional Euclidean space, and so developed along quite different lines. This separation was less clear in the popular imagination, with works of fiction and philosophy blurring the distinction, so in 1973 H. S. M. Coxeter felt compelled to write:

Little, if anything, is gained by representing the fourth Euclidean dimension as time. In fact, this idea, so attractively developed by H. G. Wells in The Time Machine, has led such authors as John William Dunne (An Experiment with Time) into a serious misconception of the theory of Relativity. Minkowski's geometry of space-time is not Euclidean, and consequently has no connection with the present investigation. —H. S. M. Coxeter, Regular Polytopes

Read more about this topic:  Four-dimensional Space

Famous quotes containing the word history:

    In all history no class has been enfranchised without some selfish motive underlying. If to-day we could prove to Republicans or Democrats that every woman would vote for their party, we should be enfranchised.
    Carrie Chapman Catt (1859–1947)

    The greatest honor history can bestow is that of peacemaker.
    Richard M. Nixon (1913–1995)

    Perhaps universal history is the history of the diverse intonation of some metaphors.
    Jorge Luis Borges (1899–1986)