Four-dimensional Space - History

History

See also: n-dimensional space#History

The possibility of spaces with dimensions higher than three was first studied by mathematicians in the 19th century. In 1827 Möbius realized that a fourth dimension would allow a three-dimensional form to be rotated onto its mirror-image, and by 1853 Ludwig Schläfli had discovered many polytopes in higher dimensions, although his work was not published until after his death. Higher dimensions were soon put on firm footing by Bernhard Riemann's 1854 Habilitationsschrift, Über die Hypothesen welche der Geometrie zu Grunde liegen, in which he considered a "point" to be any sequence of coordinates (x1, ..., xn). The possibility of geometry in higher dimensions, including four dimensions in particular, was thus established.

An arithmetic of four dimensions called quaternions was defined by William Rowan Hamilton in 1843. This associative algebra was the source of the science of vector analysis in three dimensions as recounted in A History of Vector Analysis.

One of the first major expositors of the fourth dimension was Charles Howard Hinton, starting in 1880 with his essay What is the Fourth Dimension?; published in the Dublin University magazine. He coined the terms tesseract, ana and kata in his book A New Era of Thought, and introduced a method for visualising the fourth dimension using cubes in the book Fourth Dimension.

In 1908, Hermann Minkowski presented a paper consolidating the role of time as the fourth dimension of spacetime, the basis for Einstein's theories of special and general relativity. But the geometry of spacetime, being non-Euclidean, is profoundly different from that popularised by Hinton. The study of such Minkowski spaces required new mathematics quite different from that of four-dimensional Euclidean space, and so developed along quite different lines. This separation was less clear in the popular imagination, with works of fiction and philosophy blurring the distinction, so in 1973 H. S. M. Coxeter felt compelled to write:

Little, if anything, is gained by representing the fourth Euclidean dimension as time. In fact, this idea, so attractively developed by H. G. Wells in The Time Machine, has led such authors as John William Dunne (An Experiment with Time) into a serious misconception of the theory of Relativity. Minkowski's geometry of space-time is not Euclidean, and consequently has no connection with the present investigation. —H. S. M. Coxeter, Regular Polytopes

Read more about this topic:  Four-dimensional Space

Famous quotes containing the word history:

    What you don’t understand is that it is possible to be an atheist, it is possible not to know if God exists or why He should, and yet to believe that man does not live in a state of nature but in history, and that history as we know it now began with Christ, it was founded by Him on the Gospels.
    Boris Pasternak (1890–1960)

    Literary works cannot be taken over like factories, or literary forms of expression like industrial methods. Realist writing, of which history offers many widely varying examples, is likewise conditioned by the question of how, when and for what class it is made use of.
    Bertolt Brecht (1898–1956)

    Certainly there is not the fight recorded in Concord history, at least, if in the history of America, that will bear a moment’s comparison with this, whether for the numbers engaged in it, or for the patriotism and heroism displayed.
    Henry David Thoreau (1817–1862)