Formal Language - Applications - Formal Theories, Systems and Proofs - Interpretations and Models

Interpretations and Models

Formal languages are entirely syntactic in nature but may be given semantics that give meaning to the elements of the language. For instance, in mathematical logic, the set of possible formulas of a particular logic is a formal language, and an interpretation assigns a meaning to each of the formulas—usually, a truth value.

The study of interpretations of formal languages is called formal semantics. In mathematical logic, this is often done in terms of model theory. In model theory, the terms that occur in a formula are interpreted as mathematical structures, and fixed compositional interpretation rules determine how the truth value of the formula can be derived from the interpretation of its terms; a model for a formula is an interpretation of terms such that the formula becomes true.

Read more about this topic:  Formal Language, Applications, Formal Theories, Systems and Proofs

Famous quotes containing the word models:

    Friends broaden our horizons. They serve as new models with whom we can identify. They allow us to be ourselves—and accept us that way. They enhance our self-esteem because they think we’re okay, because we matter to them. And because they matter to us—for various reasons, at various levels of intensity—they enrich the quality of our emotional life.
    Judith Viorst (20th century)