Interpretations and Models
Formal languages are entirely syntactic in nature but may be given semantics that give meaning to the elements of the language. For instance, in mathematical logic, the set of possible formulas of a particular logic is a formal language, and an interpretation assigns a meaning to each of the formulas—usually, a truth value.
The study of interpretations of formal languages is called formal semantics. In mathematical logic, this is often done in terms of model theory. In model theory, the terms that occur in a formula are interpreted as mathematical structures, and fixed compositional interpretation rules determine how the truth value of the formula can be derived from the interpretation of its terms; a model for a formula is an interpretation of terms such that the formula becomes true.
Read more about this topic: Formal Language, Applications, Formal Theories, Systems and Proofs
Famous quotes containing the word models:
“Grandparents can be role models about areas that may not be significant to young children directly but that can teach them about patience and courage when we are ill, or handicapped by problems of aging. Our attitudes toward retirement, marriage, recreation, even our feelings about death and dying may make much more of an impression than we realize.”
—Eda Le Shan (20th century)